

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Molecular Characterization of Resistance Genes to Extended-Spectrum β -Lactamase in *Klebsiella pneumoniae and Klebsiella oxytoca* Isolates From Meat and Meat Products.

A Thesis submitted by

Dalia Elsayed Abdelaziz Kotb Gobarah

B .V. Sc, Kafrelsheikh University(2011)

For the Degree of

Master in Veterinary Sciences, Microbiology

(Bacteriology-Mycology-Immunology)

Under The Supervision of

Prof. Dr. Mohamed Kamal Refai

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Dr. Mahmoud Dardiri Elhariri

Assistant Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Hala Sultan Ibrahim

Chief Researcher of Serology Unit, Animal Health Research Institute, Dokki

Supervisors

Prof. Dr. Mohamed Kamal Refai

Professor of Microbiology,

Faculty of Veterinary Medicine,

Cairo University.

Assist. Prof.Dr. Mahmoud Dardiri El-Hariri

Assistant Professor of Microbiology,

Faculty of Veterinary Medicine,

Cairo University.

Prof. Dr. Hala Sultan Ibrahim

Chief Researcher of Serology Unit,

Animal Health Research Institute, Dokki.

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Name: Dalia Elsayed Abdelaziz Kotb Gobarah

Date of Birth: 15/10/1989

Nationality: Egyptian

Degree: Master of Microbiology (Bacteriology – Immunology –

Mycology)

Thesis title: Molecular Characterization of Resistance Genes to Extended-Spectrum β -Lactamase in *Klebsiella pneumoniae and Klebsiella oxytoca* Isolates From Meat and Meat Products.

Supervisors:

Prof. Dr. Mohamed Kamal Refai - Professor of Microbiology - Faculty of Veterinary Medicine - Cairo University

Dr. Mahmoud Dardiri Elhariri - Assistant professor of Microbiology - Faculty of Veterinary Medicine-Cairo University

Prof. Dr. Hala Sultan Ibrahim - Chief Researcher – Serology Unit- Animal Health Research Institute- Dokki

Abstract

Prevalence of *K. pneumoniae* and *K. oxytoca* in meat and meat products was estimated in the present study. A total of 470 samples of meat and meat products (40 imported frozen minced meat, 35 imported frozen meat, 25 local meat, 24 local minced meat, 34 kofta, 46 sausage, 37 hot dog, 29 canned beef, 106 luncheon, 43 basterma, 51 beef burger) was collected randomly from different retail shops. The prevalence of *K. pneumoniae* was the same in meat and meat products (11.3%)., while the rate of isolation of *K. oxytoca* was higher in meat (9.7%) than in meat products (7.9%), The isolation rate was higher in imported minced meat (15% for *K. pneumoniae* and 10% for *K. oxytoca*) in comparison with the local minced meat (*K. pneumoniae*12.5% and *K. oxytoca* 8.3%). All samples of canned beef were negative. The highest isolation rate among

the meat product samples was from luncheon (16.0% *K. pneumoniae* and 11.3% *K. oxytoca*) and basterma (13.9% *K. pneumoniae and* 9.3% *K. oxytoca*) and the lowest was in beef burger (7.8% *K. pneumoniae* and 3.9% *K. oxytoca*). Twelve *K. pneumoniae* and *K. oxytoca* isolates were investigated for antimicrobial resistance against β-lactams groups of antibiotics. The resistance of the isolates to cephalothin was 100%, ampicillin 91.7%, cefpodoxime 75%, cefotaxime 66.7%, sulfamethazole 41.7%, ceftazidime 33.3%, ceftriaxone16.7%, imipenem and cefepime 8.3%. The 12 isolates of *Klebsiellae* (5 *K. oxytoca* and 7 *K. pneumoniae*) were tested for *peh* gene (gene of identification of *K. oxytoca*) and β-lactam resistance genes (SHV, TEM, CTX-M).

The SHV gene was detected in 12 (100%) of *K. pneumoniae* and *K. oxytoca* isolates, TEM gene was detected in 11(91.7%) isolates (5 isolates of *K. oxytoca* and 6 isolates of *K. pnemoniae*); while CTX-M gene was detected in 9(75%) isolates (4 isolates of *K. oxytoca* and 6 isolates of *K. pnemoniae*).

DEDICATION

To whom he strives to bless comfort and welfare and never stints what he owns to push me in the success way, who taught me to promote life stairs wisely and patiently, to my dearest late father.

Love you Dad & I miss you.

Acknowledegements

Firstly, my deepest thanks to our merciful "ALAAH" who gives me everything I have.

I wish to express my sincere gratitude and sincere thanks to **Prof. Dr.**Mohamed kamal Refai, Professor of Microbiology, Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his valuable supervision, ideal guidance, criticism through this work. He gave me the best example of what a university professor should be.

My sincere thanks and gratitude to **Dr. Mahmoud Dardiri Elhariri,** Assistant Professor of Microbiology, Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his kind guidance during this Work.

I wish to express my sincere gratitude and sincere thanks to **Prof. Dr.Hala Sultan Ibrahim,** Chief Researcher, Serology unit, Animal Health Research Institute, Dokki, for her close supervision. She encouraged me and gave me ideal responses and solved all problems during this work.

I am very grateful to **Dr. Amany Hamed El-Gohary,** Senior Researcher, Serology unit, Animal Health Research Institute, Dokki, for her kind guidance and valuable help during this work.

I want to express my deepest gratitude to my mother and my husband for their constant support and inspiration. Last, but not least, warm hugs to my son Omar for bringing always joy and happiness in my life.

LIST OF CONTENTS

No.	Content	Page
1	Introduction	1
2	Review of Literature	7
2.1	History of classification	7
2.2	Isolation of klebsiella from meat	10
2.3	Public health importance of klebsiella spp.:	14
2.4	Identification of klebsiella species	18
2.5	Antibiotic sensitivity of klebsiella	27
2.6	β-lactam resistance genes	33
3	MATERIAL AND METHODS	46
3.1	Material	46
3.1.1	Samples	46
3.1.2	Media	47
3.1.2.1	Media used for isolation and cultivation	47
3.1.2.1.1	Nutrient broth	47
3.1.2.1.2	Eosin-methylene blue agar	47
3.1.2.1.3	Xylose-Lysine-Desoxycholate (XLD) Agar	49
3.1.2.1.4	MacConkey agar	50
3.1.2.1.5	Tryptone soya broth (Casein soya bean digest medium)	51
3.1.2.1.6	Tryptone soya agar (Casein soya bean digest agar)	52
3.1.2.2	Media used for preservation and detection of motility of the isolates	52
3.1.2.3	Media used for disk diffusion method for determining the susceptibility to various antimicrobial agents	53
3.1.2.3.1	Muller Hinton Agar (Oxoid,CM0337)	53
3.1.2.3.2	Muller Hinton broth	53
3.1.2.4	Media used for biochemical reaction	54
3.1.2.4.1	Simmons citrate agar	54
3.1.2.4.2	Triple sugar iron agar	55
3.1.2.4.3	Christensen's urea agar medium	56
3.1.2.4.4	Buffered peptone water	56
3.1.2.4.5	Glucose phosphate broth	57
3.1.3	Reagents	58

LIST OF CONTENTS

No.	Content	Page
3.1.3.1	Reagents and chemicals used for biochemical tests	58
3.1.3.1.1	Kovac's reagent for indole test	58
3.1.3.1.2	40% urea solution (oxoid sR20) for urease test	58
3.1.3.1.3	Tetramethyl-P-phenylene-diamine dihydrochloride	58
	1% (Merck, code 30386) for oxidase test	
3.1.3.1.4	3% Hydrogen peroxide 10 volumes for catalase test	58
3.1.3.1.5	Andrade's indicator for sugar fermentation	58
3.1.3.1.6	Solution I of 50 % alpha naphthol in absolute ethyl	59
	alcohol and Solution II of 40% potassium hydroxide solution for VP test	
3.1.3.1.7	API 20 E Reagents	59
3.1.3.1.7	Reagents for agrose gel electrophoresis	59
3.1.3.2.1	Agarose gel 2%	59
3.1.3.2.2	Ethidium bromide solution	59
3.1.3.2.3	Tris Acetate EDTA (TAE) electrophoresis buffer	60
3.1.3.2.4	Gel loading buffer (6x)	60
3.1.3.2.5	100 bp DNA molecular weight marker	60
3.1.3.2.3	Oligonucleotide primers sequences	61
3.1.4.1	Oligonucleotide primers sequences Oligonucleotide primers sequences encoding for β-	62
5.1.4.1	lactamases resistant genes	02
3.1.4.2	Oligonucleotide primers sequences encoding for	62
0.1	identification of	0_
	K. oxytoca	
3.1.5	Antimicrobial agent	62
3.1.6	Stains	63
3.1.6.1	Gram's stain	63
3.1.6.2	Indian ink stain	63
3.1.7	Other materials and apparatus	63
3.2	Methods	64
3.2.1	Bacterial isolation	64
3.2.2	Identification of the isolates	65
3.2.2.1	Morphological examination	65
3.2.2.2	Test for motility	66
3.2.2.3	Biochemical identification	66
3.2.2.3.1	Indole test	66
3.2.2.3.2	Citrate utilization test	66
3.2.2.3.3	Triple sugar iron agar test	67

LIST OF CONTENTS

No.	Content	Page
3.2.2.3.4	Urease test	67
3.2.2.3.5	Oxidase test	68
3.2.2.3.6	Catalase test	68
3.2.2.3.7	Methyl red test	68
3.2.2.3.8	Voges Proskauer test	69
3.2.2.3.9	Sugar fermentation test	69
3.2.2.3.10	API 20 E System	70
3.2.3	Susceptibility of isolated <i>K. pneumoniae</i> and <i>K. oxytoca</i> strains to different antimicrobial agents	75
3.2.4	DNA extraction using QIA mp QIAGEN extraction kit	79
3.2.5	Polymerase chain reaction	79
3.2.6	Agarose gel electrophoresis	83
4	Results	85
4.1	Results of isolation of <i>Klebsiella</i> spp. from meat and meat products	85
4.2	Prevalence of <i>K. peumoniae</i> and <i>K. oxytoca</i> in meat and meat products	87
4.3	Antimicrobial susceptibility testing of 12 isolates of K. pneumoniae and K. oxytoca recovered from meat and meat products	90
4.4	MAR (multiple antibiotic resistance) index:	93
4.5	Detection of <i>peh</i> gene(gene of identification of <i>K. oxytoca</i>)	94
4.6	Detection of β-lactam resistance genes	95
4.6.1	Detection of β-lactam resistance genes (SHV)	98
7.6.2	Detection of β-lactam resistance genes (TEM)	99
4.6.3	Detection of β-lactam resistance genes (CTX-M)	100
5	DISCUSSION	101
6	Conclusion	117
7	Summary	119
8	References	122
9	Arabic abstract	-
10	Arabic summary	-

LIST OF TABLES

No.	Table	Page
1	Oligonucleotide primers sequences used for detection of beta-lactamase genes	61
2	Oligonucleotide primers sequences used for identification of <i>K. oxytoca</i>	62
3	Differentiation of <i>klebsiella</i> spp. by biochemical tests	74
4	Antimicrobial sensitivity testing and zone diameter interpretation	78
5	Volume and concentration of materials used in PCR assay	80
6	Thermal cycling conditions for <i>peh</i> gene during PCR	81
7	Thermal cycling conditions for SHV gene during PCR	82
8	Thermal cycling conditions for TEM gene during PCR	82
9	Thermal cycling conditions for CTX-M gene during PCR	83
10	Results of isolations of <i>Klebsiella</i> spp. from meat and meat products	85
11	Prevalence of <i>K. penumoniae</i> and <i>K. oxytoca</i> in meat and meat products	88
12	Results of antimicrobial susceptibility of <i>K.</i> pneumoniae and <i>K. oxytoca</i> isolates	91
13	Multiple resistance in <i>K. pneumoniae</i> and <i>K. oxytoca</i> against 9 antibiotics	93
14	PCR of β-lactam resistance genes in Klebsiella organisms	96

LIST OF FIGURES

No.	Figure	Page
1	Percentage of <i>Klebsiella</i> spp. isolated from meat and meat products	86
2	Prevalence of <i>K. peumoniae and K.oxytoca</i> in meat and meat products	89
3	Percentage of resistant isolates of <i>K. peumoniae</i> and <i>K. oxytoca</i> recovered from meat and meat products to 9 antibiotics	92
4	Percentage of positive isolates of β-lactam resistance genes	97

LIST OF PHOTOS

No.	Photo	Page
1	API 20 E of K. pneumonia	73
2	Agarose gel electrophoresis of products obtained by PCR for <i>K. oxytoca</i> strains to detect <i>peh</i> gene(gene of identification of <i>K. oxytoca</i>)	94
3	Agarose gel electrophoresis of products obtained by PCR for <i>K. pneumoniae</i> and <i>K. oxytoca</i> strains to detect SHV gene	98
4	Agarose gel electrophoresis of products obtained by PCR for <i>K. pneumoniae</i> and <i>K. oxytoca</i> strains to detect TEM gene	99
5	Agarose gel electrophoresis of products obtained by PCR for <i>K. pneumoniae</i> and <i>K. oxytoca</i> strains to detect CTX-M gene	100

LIST OF ABBREVIATIONS

AMP	Ampicillin
Bla	β-lactamase
CAZ	Ceftazidime
CLSI	clinical laboratory standards institute
CPD	Cefpodoxime
CRO	Ceftriaxone
Ctx	Cefotaxime
CTX-M	cefotaxime hydrolyzing capabilities
DDST	Double disc synergy test
E. coli	Escherichia coli
ESBL	Extended-spectrum beta-lactamases
FEP	Cefepime
GLY	Glycine (Amino Acid).
IMP	Imipenem
K	Klebsiella
KF	Cephalothin
PCDDT	Phenotypic confirmatory disc diffusion test
PCR	Polymerase chain reaction
Ser	serine in biochemistry
SHV	Sulphydryl variable, a type of beta-lactamase
spp.	Species
SXT	Sulfamethoxazole
TEM	Temoneira, a type of beta-lactamase named after the first patient

1. INTRODUCTION

Klebsiella is well known to most clinicians as a cause of community-acquired bacterial pneumonia. *Klebsiella* spp. primarily attack immunocompromised individuals, who are hospitalized and suffer from severe underlying diseases (**Podschun and Ullmann, 1998**).

Klebsiella spp. are opportunistic pathogens that frequently cause nosocomial infections, mainly in neonates and immunocompromised host (Emori and Gaynes, 1993).

Nosocomial *Klebsiella* infections are caused mainly by *K. pneumoniae*, the medically most important species of the genus. *K. pneumoniae* causes a necrotizing process with a predilection for debilitated people (**Umeh and Berkowitz**, **2002**).

K. pneumoniae infections may occur at almost all body sites, but the highest incidence is found in the urinary and respiratory tract (**regue** *et al.*, **2004**).