Deliberate Hypotension in Anaesthesia

An essay submitted for the fulfillment of The Master Degree in Anaesthesiology

Presented By

Mohamed Farid Mohamed El-Emady

Faculty of Medicine - Cairo University

Supervised By

Prof. Dr. Amany Kamal El-Sawy

Professor of Anaesthesiology
Faculty of Medicine - Cairo University

Dr. Mohamed Youssri Mohamed

Asst. Prof. of Anaesthesiology
Faculty of Medicine - Cairo University

Dr. Samar Abbas Abdou

Lecturer of Anaesthesiology
Faculty of Medicine - Cairo University

Faculty of Medicine
Cairo University
(2008)

بسم الله الرحمن الرحيم

﴿ رب اوز عنى ان اشكر نعمتك التي انعمت

ريلا

و على والدى و أن أعمل حالما ترضاه و احظنى برحمتك في عبادك الحالمين

صدق الله العظيم الآية (١٩) سورة النمل

Acknowledgments

First and formost thanks to "GOD" for his help to fulfill this work .

I would like to express my deepest gratitude to Professor DR. Amany Kamal El-Sawy, professor of anaesthesiology, faculty of medicine, Cairo University for her kind guidance and supervision.

My sincere thanks to Professor Dr. Mohamed Youssri Mohamed, Asst. Prof. of Anaesthesiology, faculty of medicine Cairo University for his continuous encouragement & supervision.

Last But not least, I am also expressing my warmest thanks to Dr. Samar Abbas Abdou, Lecturer of Anaesthesiology, faculty of medicine Cairo University for her generosity & positive attitude. She has devoted much efforts and time for me.

LIST OF CONTENTS

Pag
INTRODUCTION1
AIM OF WORK4
CHAPTER (1)
CLINICAL CONSIDRATIONS5
CHAPTER (2)
TECHNIQUES FOR DELIBERATE HYPOTENSION17
CHAPTER (3)
MONITORING DURING DELIBERATE HYPOTENSION53
CHAPTER (4)
REVERSAL OF DELIBERATE HYPOTENSION56
CHAPTER (5)
PROBLEMS AND COMPLICATIONS58
SUMMARY62
REFERENCES64

LIST OF TABLES

		Page
Table 1	Application for induced hypotension	7
Table 2	β- adrenergic receptors subtypes and actions	44
Table 3	Blood/gas solubility, minimum alveolar concentration and the average maintenance inspired concentration	50

LIST OF FIGURES

	J	Page
Fig. 1.	The curve for autoregulation of CBF	12
Fig. 2.	The relationship between CBF and PaCO ₂ at normal blood pressure & during extreme hypotension	13
Fig. 3.	Changes in cerebral blood flow (CBF) after acute increases in mean arterial pressure (MAP) before, during, and after	
	adenosine triphosphate (ATP)	
Fig. 4.	Schematic representation of the breakdown of sodium nitroprusside in vivo	33
Fig. 5.	Percentage change from baseline for hemodynamic variables and plasma-renin activity (PRA) during hypotension	

LIST OF ABBREVIATIONS

DH: Deliberate hypotension.

MAP: Mean arterial blood pressure.

V/Q: Ventilation perfusion mismatch.

ICP: Intracranial pressure.

CBF: Cerebral blood flow.

CVS: Cardiovascular system.

CNS: Central nervous system.

GFR: Glomerular filtration rate.

RBF: Renal blood flow.

CO: Cardiac output.

PEEP: Positive end expiratory pressure.

VMC: Vasomotor center.

ATP: Adenosine triphosphate.

GTN: Glyceryl trinitrate.

EEG: Electroencephalogram.

SVR: Systemic vascular resistance.

MAC: Minimum alveolar concentration.

ETCO₂: End tidal carbon dioxide.

CPP: Cerebral perfusion pressure.

SNP: Sodium nitroprusside.

CVP: Central Venous pressure.

PRA: Plasma renin activity.

Dinamap: Device for indirect non-invasive automated

measurement of arterial blood pressure.

Paco₂: Carbon dioxide tension.

ABSTRACT

Deliberate hypotension represents a great challenge to the anaesthetist. Deliberate hypotension is effective in decreasing blood loss and provides better visibility in surgical field. There are corner stones to achieve a safe level of hypotension which maintain adequate perfusion to main vital organs. These corner stones includes: clinical considerations, techniques, monitoring, reversal of hypotension and problems & complications. The precise incidence of complications with deliberate hypotension is difficult to determine so the decision to use deliberate hypotension should not be made in the operating room without careful consideration of the potential complications.

Key words:

Deliberate hypotension – Clinical consideration – Techniques – Problems & complications.

INTRODUCTION

Introduction

Most studies define deliberate hypotension as reduction in systolic blood pressure to 80 to 90 mmHg. According to another definition, deliberate hypotension is a decrease in MAP to 50 to 60 mmHg in normotensive patients ¹ and 20-30% from preoperative mean arterial blood pressure in chronic hypertensive patients ².

The main purpose of deliberate inducing hypotension is to decrease blood loss, thereby improving operating conditions or decreasing the need to blood transfusions. The potentials for transmitting disease by blood transfusion have made deliberate hypotension an even more important consideration today than ever before ³.

The possible benefit to the surgeon is improved visibility of operative field during delicate procedures and major orthopedic procedures e.g. total hip arthroplasty, head and neck surgery, procedures on the cranium, middle ear and radical cancer operations ³.

When considering the many facts of deliberate hypotension the concern of the anesthesiologist should be directed towards not only selection of the most appropriate hypotensive drug but also the type of surgery, length of the procedure, need to decrease blood loss, and patient suitability ³.

Several techniques are available to induce deliberate hypotension. Physiological techniques like positioning and ventilation. Pharmacological techniques are including volatile anesthetics, direct acting vasodilator drugs, autonomic ganglion blocking drugs, alpha adrenergic blocking drugs, combined α and β adrenergic receptor blocking drugs, calcium channel blocking drugs, prostaglandin E_1 . Regional techniques like spinal & epidural anaesthesia. Deliberate hypotension decreases arterial blood pressure by decreasing cardiac output, systemic vascular resistance or both 4 .

The effects of hypotension on various organ beds are complex, depending on the drugs used and the magnitude and length of hypotension³.

Beat to beat measurement of arterial blood pressure, electrocardiography monitoring is mandatory for patients undergoing clinically significant deliberate decrease in arterial blood pressure. Routinely temperature and pulse oximetry are essential ³.

The contraindications to deliberate hypotension have relaxed over the years because of better drugs, monitoring, and more experience with the techniques, However, several contraindications must be considered, cerebrovascular disease, liver dysfunction, renal dysfunction, or severe peripheral claudication suggest that the patient is less likely to have organ perfusion., Patients with severe anemia and hypovolaemia are not suitable candidates ⁴.

The precise incidence of complications with deliberate hypotension is difficult to determine but it is usually related to the nervous system, anuria and oliguria, postoperative bleeding to the operative side ⁵.

The decision to use deliberate hypotension should not be made in the operating room without careful consideration of the potential complications ⁵.

AIM OF WORK

Aim of work

Deliberate Hypotension presents a great challenge to the anesthesiologist. So the aim of this study is to discuss the following items:

- Clinical Considerations which includes:
 - Indications
 - Contraindications
 - Effect on organ function
- Techniques for Deliberate hypotension which includes:
 - Physiological factors
 - Pharmacological methods
 - Regional anaesthesia
- Monitoring.
- Reversal of deliberate hypotension.
- Problems, complications and postoperative care.

CHAPTER 1