Non Phacoemulsification Small Incision Cataract Surgery

Essay

Submitted for partial fulfillment of Master degree in ophthalmology

By
Awney Karam Deif Yosif
MB;Bch, Diploma of ophthalmology,
Cairo university

Supervised by:

Prof. Dr. Mohammed Mahmoud El Sayed

Professor of ophthalmology

Cairo University

Prof .Dr. Hebatalla Abdel Rahman El Gendy
Assistant professor of ophthalmology
Cairo university

Dr. Eman Magdy Eissa Lecturer of ophthalmology Cairo University

Faculty of medicine
Cairo University

2010

Abstract

Recent trends in cataract surgery involve removal of the lens through a small scleral tunnel incision in order to reduce postoperative astigmatism and to promote rapid visual stabilization of the patient. This essay based on a new technique of cataract extraction which is now partly revitalized in developing countries as during the early 1980s , when a self – sealing tunnel incision was introduced , surgeons developed instruments and techniques to cut the nucleus into parts for easy removal through a smaller self sealing sclero-corneal tunnel incision .

The technique involves creating a frown-shaped 6-8 mm scleral tunnel incision when the nucleus is removed as a whole without fragmentation whereas, the incision size is decreased to 3.5-5.5 mm when the nucleus is extracted after fragmentation and about 2-3 mm posterior to the limbus centrally and the incision should involve 1/3-1/2 the scleral thickness.

Key Words:

The dynamic of sutureless-sics, Scleral tunnel incision, Nuclear expression (Laxation), Techniques of nucleus management in MSICS.

Acknowledgement

I would like to offer my sincerest gratitude to **Professor Dr. Mohammed Mahmoud El Sayed** and **Professor Dr. Hebatalla Abdel Rahman El Gendy** and **Dr. Eman Magdy Eissa** for their constant and valuable guidance and their unyielding support throughout the preparation of this essay .

Contents

	Page
Introduction	1
Aim of work	
	2
Review of the literature	3
The dynamic of sutureless-sics	4
Scleral tunnel incision	8
-Scleral pocket incision	9
-Technique of scleral tunnel incision	11
-Advantages and disadvantages of scleral tunnel incision	14
Nuclear expression(Laxation) -Introduction	15
	16
-Hydrodissection -Hydrodelineation	16 19
-Hydroexpression	19
-Viscoexpression	20
Techniques of nucleus managment in MSICS	21
-Nucleus fragmentation in scleral pocket(Bartov technique)	23
-Manual multiphacofragmentation(MPF)(Gutierrez technique)	26
-Quarters extraction technique(Akura technique)	31
- The Kongsap technique	36
-Forceps-guided nuclear cleavage cataract extraction(Dong technique)	40
-The preshop technique	44
-Snare technique	49
-Phacosection technique	53
-Irrigating vectis technique	56
-Modified phaco-sandwitch technique of non phaco-sics using Singh v	
-Non phaco-sics using microvectis technique(Mishra technique)	63
-MSICS using fishhook technique	66
Comparsion between MSICS and other techniques for	
Cataract surgery	70
English summary	80
References	82
Arabic summary	02

List of figures

Re	evi	ew of the literature	Page
Th	e d	ynamic of sutureless small incision cataract incision	
Fig		Radial transverse scleral incision	5
Fig	2	Horizontal scleral incision with backward relaxing incision	5
_		The inverted scleral v-shaped chevron scleral incision	5
Fig	4	Frown incision	6
Fig	5	Clear corneal incision	6
Sc	lera	al tunnel incision	
Fig	6	The triplaner scleral tunnel incision	9
_		The circumlimbal scleral incision	9
_		The straight scleral incision	9
Fig	9	The frown incision	10
Fig		chevron incision	10
_		(left) Small trapezoid incision	
_		(Right) Dissection of the incision	10
Fig	12	(Left) Large trapezoid incision for ECCE	
		(Right) Dissection of the incision	11
Fig	13	Conjunctival dissection	11
Fig	14	Cauterization of superficial vessels	11
Fig	15	(A&B) scleral tunnel dissection	12
Fig	16	(a&b) The AC is entered using 3 mm keratome	12
Fig	17	Extension of the inner lip of tunnel on either side by the keratome for about 8-9 m	m
wid	th		12
Fig	18	(Left) Large trapezoid incision for ECCE	
		(Right) Dissection of the incision	13
Fig	19	Measurments of the frown incision	13
Fig	20	Frown incision	13
Fig	21	(AandB) Scleral tunnel dissection	13
Nu	cle	ear Expression (Luxation)	
Fig	22	Continuous curvilinear capsulorhexis (CCC) with red reflex	16
Fig	23	A-cortical cleavage hydrodissection	
		B-cortical hydrodissection	17
Fig	24	Hydrodissection	17
Fig	25	Expression of the nucleus in AC	17
Fig	26	a-(upper) straight hydrodissection cannula	
		b-(lower) curved hydrodissection cannula	18
Fig		Straight hydrodissection cannula	18
Fig		Curved hydrodissection cannula	18
Fig		Hydrodelineation	19
Fig		Hydroexpression of the nucleus	20
Fig	31	Nucleus expression assisted by lifting the nucleus with the tip of irrigating cannul	a 20
Nu	cle	eus fragmentation in a scleral pocket(Bartov technique)	
Fig	32	The nucleus is brought into the scleral pocket with the aid of a glide and pressure	at the
mid	dle	of the base of the chevron incision	23
Fig	33	A spatula is inserted at 10 oclock limbal opening to pushout the nucleus	24
Fig	34	(left) nucleus is fragmented in the scleral pocket	
		(right) extraction of the nucleus	24

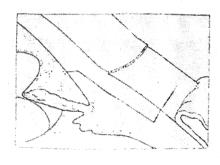
Manua	al multi phacofragmentation(MPF)	Page
Fig 35	Nucleotome with a racquet-shaped end, 8mm long and 2mm wide	26
Fig 36	Spatula 8mm long by 2mm wide	27
Fig 37	Right and left manipulators	27
Fig 38	A 3.2mm clear corneal incision	28
Fig 39	A 3.5mm scleral tunnel incision	28
Fig 40	Fragmentation of the nucleus	28
Fig 41	Extraction of the fragmented nucleus	29
Fig 42	MPF is repeated until all the nucleus is fragmented	29
Fig 43	Right and left manipulators inside the eye	30
_	ers extraction technique(Akura technique)	21
Fig 44	The nucleus puncher	31
Fig 45	A-The front edge of the nucleus is cut by a nucleus puncher	
	B-The remaining three quarters of the nucleus is wedged with a claw vectis	22
E:~ 16	C-The remaining three quarters of the nucleus is rotated out with aclaw vectis	32
Fig 46	The nucleus puncher inserted inside the eye Rotation and extraction of the nucleus	32 33
Fig 47		33
	ongsap technique	26
Fig 48	A nucleus supporter	36
Fig 49	Nuclear fragmentation using nuclear supporter and nuclear cutter	36
Fig 50	Nuclear removal through the corneal incision	37
_	os-quided nuclear cleavage cataract extraction(Dong tech.)	4.4
Fig 51	Technique for forceps-guided nuclear cleavage	41
Fig 52	The modified nucleus hook	42
Fig 53	Evolution of BCVA after surgery by Dong technique	42
_	eshop technique	
Fig 54	The nucleus is prolapse into AC	44
Fig 55	The preshopper buries into the nucleus	45
Fig 56	The preshopper is squeezed to separate the blades and chop the nucleus	45
Fig 57	The cleft in the nucleus is widened by distracting the two instruments	46
Fig 58	The first nuclear fragment is removed by a vectis	46
Fif 59	The second nuclear fragment is removed by a vectis	47
	technique	40
Fig 60	Ready to use snare	49
Fig 61	Negotiation of the snare into AC	50
Fig 62	Rotating the loop around the nucleus after crossing the equator	50
Fig 63	Snare cutting through the nucleus	51
Fig 64	Viscoelastic substance injected into the cut to facilitate easy separation	52 52
Fig 65	Removal of the nucleus fragment	52
	section technique	50
Fig 66	Bimanual rotation of nucleus through a smaller rhexis	53
Fig 67	Bisection of nucleus	54
Fig 68	Visco-sandwich expression of the second half of the nucleus	55
_	ing vectis technique	
Fig 69	Irrigating vectis with 3 ports	56
Fig 70	(A and B) Engaging the nucleus in the internal wound	57
Fig 71	(A and B) Nucleus extraction with irrigating vectis	57

Modifie	ed phaco-sandwich technique(Singh technique)	
Fig 72	Singh vectis and sinsky hook outside the eye	59
Fig 73	Nucleus prolapse into AC by bimanual rotation of the nucleus	60
Fig 74	A-The lens loop(Singh vectis)and sinsky hook are enter under clear vision	
	B-The lens loop inserted beneath the nucleus and sinsky hook in front of it	60
	C- The nuclear mass is sandwitched between the two instruments	61
Fig 75	The nucleus prolapsed through scleral pocket outside the eye	61
Fig 76	Iris prolapse	61
Fig 77	Iridodialysis	62
Non ph	aco-sics using microvictis (Mishra technique)	
Fig 78	Sclero-corneal tunnel incision	63
Fig 79	Prolapse of the nucleus to AC	63
Fig 80	Microvictis(lens loop) inside the eye	64
Fig 81	Iridodialysis with severe hyphaema	64
MSICS	using Fishhook technique	
Fig 82	The fishhook	66
Fig 83	Fishhook showing the slight bent	66
Fig 84	Fishhook inside the eye	67
Fig 85	Delivery of the nucleus by fishhook	67

List of tables

Table 1: Intraoperative and postoperative complications of Kongsap technique	Page
Table 2: Endothelial cell count and cell loss of Kongsap technique	39
Table 3 : Types of moderate to severe intraoperative complications	71
Table 4 : OCTET grades and score for intraoperative complications	72
Table 5 : OCTET grades and scores for postoperative complications at 6 weeks follow up	72
Table6:Types of postoperative complications with OCTET score more than 2,at 6 week follows:	low up73
Appendix 1: Intraoperative complications by OCTET grade and score	73
Appendix 2 : Postoperative complications by OCTET grade and score	74

Review of literature


The dynamics of sutureless small incision cataract surgery

History

Prior to the advent of silk sutures, sutureless cataract incisions were the norm of necessity in ophthalmology but they were not self-sealing for the obvious reasons relating to technique and instrumentation. The earliest mentions of scleral tunnel incision of cataract sugery were made by Richard P. kratz et al in 1980. (*Kratz et al*, 1980).

In 1990, steven B Siepser described a radial transverse incision (fig.1) which admitted only foldable implants. This was a workable but technically difficult incision and was potentially dangerous in inexperienced hands . (*Steven*, 1990).

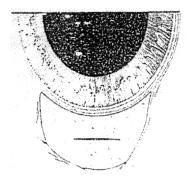


Fig. (1): Radial transverse scleral incision (Steven, 1990)

Whereas, in 1990, Michael Mcfarland reported sutureless incision for foldable implants (fig.2) which was based on a series of relaxing incisions in the bed of a scleral tunnel. (*Michael Mcfarland*, 1990).

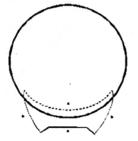


Fig. (2): Horizontal scleral incision with backward relaxing incision (*Michael Mcfarland*, 1990)

Furthermore, chevron v- shaped (Fig. 3) sutureless scleral tunnel incision was designed to admit not only foldable but rigid lenses as well, and was practical and easily adopted by cataract surgeons. (*Pallin*, 1991).

8 to 9 mm

1.5 ann
2.5 ann

Fig. (3): The inverted, V-shaped, chevron scleral incision is approximately half thickness. The apex of the V is 1.5 mm from the limbus and the angle between the arms of the V, 90 degree. The base of incision is 5.0 mm long (the distance between the tips of the V) and its distance from the limbus, approximately 4.0 mm. The internal opening of the tunnel is 8.0 to 9.0 mm long. (*pallin*, 1991).

A similar incision, called the frown shaped scleral tunnel incision (Fig. 4)was widely popularized by Jack singer in 1991, that was firstly closed with one suture, then a sutureless frown incision was designed (*Singer*, 1991).

Fig. (4): Frown incision (Singer, 1991)

The scleral tunnel incision was reported as an astigmatism – neutral method of entering the anterior chamber. However despite, the evolution in sutureless scleral incision, clear corneal incisions remain the most preferred incision for cataract surgeons, although it still required sutures because of the nature of corneal tissues which resist stretching and tendency of the incision to tear during implant insertion as, corneal incision measured pre and post insertion of foldable implants show a mean increase in internal width of 4.4 to 6.2 %, depending upon whether forceps or injector insertion technique was used. (*Girard*,1995; *Ernest*, 1997; *Radner et al* 1997; *Leaming*, 1999 and *Mamalis*, 2000).

The current popularity of clear- corneal incision (Fig. 5) is related to considerations i.e. no need to incise the conjunctiva with cauterization of blood vessels, located at the temporal aspect of AC which tends to counteract against the rule astigmatism (ATR) and also topical and intra cameral anaesthesia have been shown to be most effective in clear corneal incisions. (*Fine*, 1993; Gills, 1997and Koch, 1997).

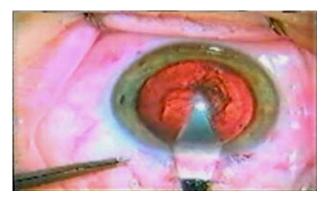


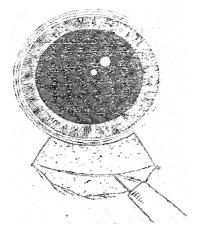
Fig. (5): Clear corneal incision (Fine, 1993; Gills, 1997 and Koch, 1997)

However, corneal incisions have some disadvantages. It was reported to be difficult to obtain square incisional geometry i.e the length of the tunnel must be equal to or exceed the width of the incision. Since a long tunnel through the cornea presents a problem during manipulation in the anterior chamber, also short external corneal incision tends to tear when the implant is forced through it and the corneal incisions depend for their integrity upon swelling of the lips initially. But the swelling of incision lips is a transient phenomena so, the incision which appears to be self sealing at surgery may be easily induced to be leaky in the post operative period as the corneal tissue does not heal quickly, forming relatively weak adhesive bonds making the incision less secure. (Radner et al., 1997; Ernest et al., 1998 and Mamalis, 2000).

So, the properties of the reliable self sealing incision are square incisional geometry. This means that the length of the tunnel must be equal to or exceed the width of the incision, in other words, a short tunnel with long incision is less likely to be self sealing than a long tunnel with a short incision, also relatively short external incision with a tunnel that flares to a larger internal incision, a geometric external incision shape which tends to stretch. Thus the incision which does not meet these criteria is subject to tearing or causing problems when required to be self sealing. (Buzard and Febbraro, 2000).

Scleral Tunnel Incision

The term small incision generally refers to an incision 6 mm or less in length. Small incision cataract surgery could be performed either through a scleral or clear corneal approach. (*Troutman et al*, 1992).


Scleral tunnel (pocket) incision:

The term scleral tunnel incision refers to an incision initiated 2-4 mm posterior to the limbus and extending 1-2 mm anterior to the limbus into clear cornea, and involving 1/3 - 1/2 the thickness of the sclera. (Fig. 6)(*Fine*, 1995).

Fig. (6): The triplaner sceral tunnel incision starting 2-3 mm posterior to the limbus and involving 1/3 - 1/2 scleral depth. The second part of the incision extends into clear cornea. The third part of the incision enters the AC perpendicular to the second plane. (*Fine*, 1995)

Self-sealing sceral tunnel incision varies with respect to the configuration and the width of the groove i.e the external scleral incision. The incision may be circumlimbal (Fig. 7), straight (Fig.8), frown shaped (Fig. 9), inverted v-shaped chevron (Fig. 10) or trapezoid shaped scleral incision. (Fig. 11 & 12).(pallin, 1991; Maloney et al., 1991; Nikeghbali, 1994 and Fine, 1995).

Fig. (7): The circumlimbal scleral incision (*Fine*, 1995)

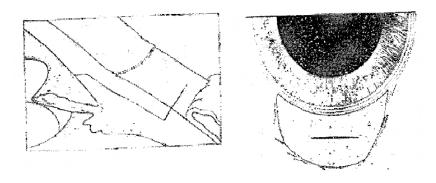


Fig. (8): The straight scleral incision (Fine, 1995)