

ON THE STUDY OF Z-SOURCE CONVERTERS

M.Sc. Thesis

Prepared by:

Eng. Mahmoud Ahmed Allam Sayed

Submitted in partial fulfillment of the requirements for the M.Sc. degree in Electrical Engineering

Supervised by:

Prof. Dr. Ahmed Abdel-Sattar Abdel Fattah Dr. Mostafa Ibrahim Mohammed Marei

EXAMINERS COMMITTEE

Name: Mahmoud Ahmed Allam Sayed

Thesis title: On the study of Z-Source converters

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Osama Ahmed Mahgoub

Professor of Electric Power Faculty of Engineering, Cairo University

Prof. Dr. Hamdy S. K. El Gohary

Professor of Electric Power Faculty of Engineering, Ain Shams University

Prof. Dr. Ahmed Abdel Sattar Abdel Fattah

Professor of Electric Power Faculty of Engineering, Ain Shams University

Dr. Mostafa Ibrahim Mohammed Marei

Associate Professor of Electric Power Faculty of Engineering, Ain Shams University

SUPERVISORS COMMITTEE

Name: Mahmoud Ahmed Allam Sayed

Thesis title: On the study of Z-Source converters

<u>Degree:</u> Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Ahmed Abdel Sattar Abdel Fattah

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

Dr. Mostafa Ibrahim Mohammed Marei

Associate Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements for M.Sc. degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the department of electrical power and machines, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name:	Mahmoud Ahmed Allam Sayed
Signature:	
Date:	/ / 2013

ACKNOWLEDGEMENT

I thank God, for wisdom and knowledge that He has blessed me. You made me strong. You gave me reasons to go and make the best out of me. You are the reason why I am here.

I would like to thank my supervisors: Professor Ahmed Abdel Sattar and Dr. Mostafa I. M. Marei for their continuous guidance, support, and encouragement throughout my research study. They have been wonderful advisors to me and major influence in my academic life. I could not possibly list all that I have learned from them.

I am grateful for my parents and my aunt, who helped me through all these. Thank you for supporting me in every way.

> Mahmoud Ahmed Allam Cairo, 2013

ABSTRACT

The importance of power electronic converters increased rapidly in the last years. They are necessary for most of modern power applications such as motor drives, VAR compensation, switched mode power supplies (SMPS), active filters, hybrid electric vehicles, integration of renewable energy resources to electricity grid... etc. Power conversion between different electricity forms (DC/AC) and levels (high voltage/low voltage) is a must for most of these applications.

Many topologies are recently introduced to allow power conversion with high efficiency and ease of control. In 2003, Fang Zheng Peng, introduced the Z-source inverter as a new topology with single stage buck/boost capability. Many developments and researches are made on the Z-source inverter till now.

This thesis discusses the theory of operation, different topologies, control techniques and applications of Z-source converters. In addition, the thesis presents three-phase and single-phase uninterruptable power supplies (UPSs) based on the high performance Z-source inverter (ZSI). The proposed control strategy is based on two loops. The first loop is dedicated to regulate the dc voltage of the Z-network capacitor and limiting the peak value of the dc link voltage by controlling the shoot-through duty cycle. The second loop employs the instantaneous voltage control technique to maintain the sinusoidal shape of the output voltage. Coordination between the two control loops is achieved by utilizing the simple boost control method to generate the PWM signals for the ZSI switches.

Simulations of the proposed UPS system are conducted using EMTDC/PSCAD package to evaluate the dynamic performance of the proposed control strategy. An experimental setup is built to verify the performance of single phase ZSI for both open loop and closed loop control. The experimental results are presented and they agree with the simulation results. This proves

Abstract

the validity of the topology and the proposed control strategy for the singlephase UPS application.

The thesis consists of six chapters; they are summarized as follows:

Chapter (1): Gives an introduction about traditional converters and their limitations.

<u>Chapter (2):</u> Includes a literature review about the Z-source inverter topology, theory of operation, modes of operation, topologies, PWM control methods and applications.

<u>Chapter (3):</u> Discusses the proposed control strategy for the Z-source inverter based UPS application. Both three-phase and single-phase UPSs are presented.

<u>Chapter (4):</u> Investigates the simulation results of the proposed control strategy. The performance of the three-phase and single-phase UPSs systems based on the proposed Z-source inverter are studied under both dynamic and steady state operation.

<u>Chapter (5):</u> Describes the experimental setup. Moreover, the experimental results are analyzed and compared with the simulation results. Validity of the proposed system is proved.

<u>Chapter (6):</u> Concludes the thesis and recommends some directions for future research related to the subject of the thesis.

Table of Contents

TABLE OF CONTENTS

E	XAMINERS COMMITTEE		İ	
SI	UPERVISORS COMMITTEE		ii	
S٦	TATEMENT		iii	
Α	CKNO	OWL	EDGEMENT	iv
Α	BSTR	ACT		v
		_	CONTENTS	vii
	ST O			
				Χ
			GURES	хi
LI	ST O	F AB	BREVIATIONS	XV
1	Ir	ntrod	luction	1
	1.1	Trac	litional converters	1
	1.	1.1	Voltage source Converters (V- Source Converter)	1
	1.	1.2	Current Source Converter (I-Source converter)	2
2	Li	itera	ture Review	5
	2.1	Z-So	ource Converter	5
	2.	1.1	Structure of Z-source converter	5
	2.	1.2	Equivalent circuits and principle of operation	7
	2.	1.3	Circuit analysis and voltage relations	10
	2.	1.4	Pulse Width Modulation (PWM) Methods for 3-Phase ZSI	13
	2.2	High	Performance Z-Source Inverter	29
	2.	2.1	High-Performance/Bidirectional Z-Source Inverter Topology	29
	2.	2.2	Control strategy for SW7	35
	2.	2.3	Equivalent circuit and voltage relationships	35
	2.3	_	le Phase Z-Source Inverter	36
	2.4		difications and Improvements of ZSI	37
	2.	4.1	Improved Z-Source Inverter	37
	2.	4.2	Switched Inductor Z-Source Inverter (SL-ZSI)	38

Table of Contents

	۷.	4.3	Trans-z-Source inverters	39
	2.	4.4	Dual-Input-Dual-Output Z-Source Inverter	40
	2.	4.5	Current Type ZSI (Current-Fed ZSI)	41
	2.5	Dyna	amic and Transient Modeling of Z-Source Inverter	42
	2.6	Close	ed-Loop Control Techniques for Z-Source Inverter	43
	2.7	Appl	ications of Z-Source Inverter	43
	2.	7.1	Adjustable Speed Drives (ASD)	43
	2.	7.2	Traction and Hybrid Electric Vehicles	44
	2.	7.3	Renewable Energy, Distributed Generation and Energy Stora	ge
			Applications	44
	2.	7.4	UPS Application	44
	2.8	Diffe	rent Power Conversion Concepts Using Z-Source concept	44
	2.	8.1	Multi-Level Inverters	45
	2.	8.2	Matrix Converters	45
	2.	8.3	Cyclo-Converters	45
	2.	8.4	DC-to-DC conversion	45
3	т	he Pr	oposed Control Strategy for High-Performance ZSI B	ased
•		PS	oposed control strategy for riight refrontiance 251 b	46
			and and of Traditional LIDS Tamplesias	_
	3.1		ground of Traditional UPS Topologies	46
	3.2	•	osed Z-Source Inverter Based UPS Topology	48
	3.3	-	osed Control Strategy for a 3-Phase High Performance ZSI Use	
	2		Application PC voltage central lean	49 50
		3.1	DC voltage control loop The Output Voltage Control Loop	50
		3.2	The Output Voltage Control Loop	51
	3.4	•	osed System Configuration and Control Strategy for Single-Ph	
	2	4.1	ication DC voltage control loop	53 53
		4.1	AC side voltage control loop	53
	Э.	4.2	AC side voitage control loop	33
4	Si	imula	ation Results	55
	4.1	Thre	e-Phase UPS Based on High Performance Z-Source Inverter	55
	4.	1.1	Load Disturbances	55
	1	1.2	Linear Load	55

Table of Contents

	4.	.1.3	Non-Linear Load	58
	4.	1.4	Supply Voltage Sag	60
	4.2	Sing	le-Phase UPS Based on High Performance Z-Source Inverter	62
	4.	.2.1	Open Loop Control	62
	4.	.2.2	Capacitor Voltage Closed Loop Control	65
	4.	.2.3	The Proposed Control of Single-Phase UPS	68
5	E	xperi	mental Work	74
	5.1	Hard	dware Description	74
	5.	.1.1	High Performance Z-Source Network Board	75
5.1.2		.1.2	Single-Phase Inverter Board	78
	5.	.1.3	Microcontroller Board	81
	5.2	Expe	erimental Tests and Results	89
	5.2.1		Open loop Control	89
	5.	.2.2	Closed Loop Control of Capacitor Voltage	97
6	C	onclu	usions and Recommendations	105
	6.1	Cond	clusions	105
	6.2	Reco	ommendations	106
R	efere	ences		107

List of Tables

LIST OF TABLES

Table 4-I:	Parameters of Proposed Three-Phase UPS	55
Table 4-II:	Parameters of Single-Phase ZSI	62

LIST OF FIGURES

Figure 1-1:	Traditional V-source inverter	1
Figure 1-2:	Traditional I-source converter	3
Figure 2-1:	Structure of Z-source converter	6
Figure 2-2:	Typical circuit of Z-source inverter	7
Figure 2-3:	Equivalent circuit of the ZSI as seen from the DC link	8
Figure 2-4:	Equivalent circuit of ZSI during shoot-through state	9
Figure 2-5:	Equivalent circuit of ZSI during zero non-shoot-through state	9
Figure 2-6:	Equivalent circuit of ZSI during the active states	10
Figure 2-7:	Simple boost control waveforms	14
Figure 2-8:	Voltage gain of simple boost control	15
Figure 2-9:	Switch voltage stress of simple boost control	16
Figure 2-10:	Maximum boost control waveforms	17
Figure 2-11:	Voltage gain of maximum boost control	19
Figure 2-12:	Switch voltage stress of maximum boost control	19
Figure 2-13:	Waveforms of maximum boost control with third harmonic injury	ectior
		20
Figure 2-14:	Voltage gain of maximum boost control with third harmonic	
	injection	21
Figure 2-15:	Change of duty ratio of maximum boost control	23
Figure 2-16:	Waveforms of maximum constant boost control	24
Figure 2-17:	Voltage gain of maximum constant boost control	26
Figure 2-18:	Waveforms of maximum constant boost control with third har	moni
	injection	26
Figure 2-19:	Voltage gain of maximum constant boost control with third	
	harmonic injection	27
Figure 2-20:	Comparison between voltage stress of the three PWM method	ls 28
Figure 2-21:	General topology of high performance Z-source inverter	30
Figure 2-22:	High performance Z-source inverter topology for unidirectiona	l
	supply	30
Figure 2-23:	Equivalent circuit of high performance ZSI during mode 1	31

Figure 2-24:	Equivalent circuit of high performance ZSI during mode 2	31
Figure 2-25:	Equivalent circuit of high performance ZSI during mode 3	32
Figure 2-26:	Equivalent circuit of high performance ZSI during mode 4	32
Figure 2-27:	Equivalent circuit of high performance ZSI during mode 5	33
Figure 2-28:	Equivalent circuit of high performance ZSI during mode 6	34
Figure 2-29:	Equivalent circuit of high performance ZSI during mode 7	34
Figure 2-30:	Gate signal to switch sw7	35
Figure 2-31:	General shoot-through mode of operation for high performa	ance ZSI
		36
Figure 2-32:	General non-shoot-through mode of operation for high perf	ormance
	ZSI	36
Figure 2-33:	Improved Z-source inverter topology	37
Figure 2-34:	Comparison between capacitor voltage of traditional and im	proved
	Z-source inverter	38
Figure 2-35:	Switched inductor ZSI topology	38
Figure 2-36:	Comparison between voltage boost curves of traditional and	d SL-ZSI
		39
Figure 2-37:	Voltage fed trans-ZSI	40
Figure 2-38:	Current-fed trans-ZSI	40
Figure 2-39:	Dual input dual output ZSI topology	41
Figure 2-40:	Current-fed ZSI	42
Figure 2-41:	Current-fed nine-switch inverter topology	42
Figure 3-1:	UPS topology (inverter + low frequency transformer)	47
Figure 3-2:	UPS topology (DC boost + inverter)	47
Figure 3-3:	Proposed UPS topology	48
Figure 3-4:	Proposed control strategy of a 3-phase UPS high performance	ce ZSI
	used for UPS application	49
Figure 3-5:	Shoot-through PWM signals	51
Figure 3-6:	AC controller limiter and AC modulation signal for one inver-	ter leg
		52
Figure 3-7:	Logic representation of gate drive system	52
Figure 3-8:	Proposed system configuration for single-phase UPS.	53
Figure 4-1:	Simulation results of linear load	57
Figure 4-2:	Simulation results of non-linear load	59

Figure 4-3:	Simulation results at sudden battery voltage sag	61
Figure 4-4:	Simulation results of single phase ZSI under linear load (zoom)	63
Figure 4-5:	Simulation results of single phase ZSI under linear load	64
Figure 4-6:	Simulation results of single phase ZSI under nonlinear load	66
Figure 4-7:	Simulation of capacitor voltage controller under supply voltage	
	disturbance	67
Figure 4-8:	Simulation of capacitor voltage controller under load disturban	ces
		69
Figure 4-9:	Simulation of linear load disturbance	70
Figure 4-10:	Simulation results of nonlinear load disturbance	72
Figure 4-11:	Simulation results under supply voltage sag	73
Figure 5-1:	Experimental setup of ZSI	74
Figure 5-2:	Schematic diagram of the Z-source power network	75
Figure 5-3:	Schematic of gate driver circuit of IGBTs	76
Figure 5-4:	PCB of high-performance Z-source network	77
Figure 5-5:	Schematic diagram of the single phase inverter board	78
Figure 5-6:	Schematic diagram of gate driver circuit for inverter board	79
Figure 5-7:	PCB layout of inverter board	81
Figure 5-8:	Shoot-through signals	82
Figure 5-9:	PWM signal of channels PWM7-PWM6	83
Figure 5-10:	PWM signals of channels PWM4-PWM5	83
Figure 5-11:	Connection of nor gates to get shoot-through signals	84
Figure 5-12:	Conditioning circuit of capacitor voltage	85
Figure 5-13:	Conditioning circuit of output ac voltage	86
Figure 5-14:	Schematic diagram of the two isolated power supplies	86
Figure 5-15:	Microcontroller board	88
Figure 5-16:	Single phase ZSI with open loop control	89
Figure 5-17:	PWM of single phase ZSI	90
Figure 5-18:	Complete experimental setup	91
Figure 5-19:	DC link voltage, capacitor voltage and coil current	92
Figure 5-20:	DC link, capacitor voltage and coil current from low frequency	93
Figure 5-21:	Gate signals and coil current (high freq)	94
Figure 5-22:	Gate signals and coil current (low freq)	95
Figure 5-23:	Output AC voltage and current of linear load	96

Figure 5-24:	Output AC voltage and current of nonlinear load	97
Figure 5-25:	Block diagram of capacitor voltage closed loop control	98
Figure 5-26:	Steady state performance of the closed loop controller under	high
	supply voltage	99
Figure 5-27:	Waveforms of closed loop control of capacitor voltage under	
	reduced supply voltage	100
Figure 5-28:	Dynamic response of the capacitor voltage controller under su	pply
	disturbances	101
Figure 5-29:	Capacitor voltage under supply voltage disturbance	102
Figure 5-30:	Signals under load disturbances	103
Figure 5-31:	Capacitor voltage and load current under load disturbances	104