

Ain Shams University Faculty of Science Department of Biochemistry

Assessment of the Antifibrotic Activity of Polysaccharides Extracted from Oyster Mushroom (Pleurotus ostreatus) Mycelium in the Rats Liver

Thesis Submitted for the Award of Ph. D in Biochemistry

Presented By

Al Shaimaa Mohamed Taha Ali Ahmed

(B. Sc. in Biochemistry, 2002; M. Sc. in Biochemistry, 2008)

Under Supervision of

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Fawzia Mohamed Refaie Prof. Dr. Amr Youssef Ezz El Din Esmat

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Amel Ali Soliman

Professor of Histology Faculty of Medicine Ain Shams University

2014

تقييم النشاط المضاد للتليف لعديدى التسكر المستخلص من مايسيليوم عيش الغراب المحارى (Pleurotus ostreatus) في كبد الجرذان

رسالة مقدمة من الشيماء محمد طه علي أحمد

بكالوريوس الكيمياء الحيوية (2002) ماجستير العلوم في الكيمياء الحيوية (2008) للحصول على درجة دكتوراة الفلسفة في العلوم في الكيمياء الحيوية

تحت إشراف

أد/ عمرو يوسف عز الدين عصمت أستاذ الكيمياء الحيوية كلية العلوم جامعة عين شمس

أد/ فوزية محمد رفاعي أستاذ الكيمياء الحيوية كلية العلوم جامعة عين شمس

أد/ أمل على سليمان أستاذ الهستولوچيا كلية الطب جامعة عين شمس

List of Contents

Contents	
Acknowledgements	i
Abstract	ii
List of Abbreviations	iii
List of Tables	viii
List of Figures.	X
Introduction	1
Aim of the Work	3
Chapter I: Review of Literature	5
Fibrogenic cells.	8
Hepatic stellate cells, the principle fibrogenic cells	10
Deposition of extracellular matrix	11
Factors affecting HSC activation.	14
Important Factors in the Fibrogenic Pathway	17
1-Transforming growth factor-β1 (TGF-β1)	17
TGF-β signaling pathway	17
Role of TGF-β1 in tissue fibrosis	20
2-Tissue inhibitor of matrix metalloproteinase (TIMP)	21
3-Matrix metalloproteinases (MMPs)	23
Mechanisms of hepatic toxicity: apoptosis and necrosis	26
Thioacetamide: an inducer for apoptosis and necrosis	31
Some mediators that control both apoptosis and necrosis via	
stimulation or inhibition	32

1.Extracellular mediators	32
a.Tumor necrosis factor-alpha (TNF-α)	32
TNF- α induced signaling pathways in hepatocytes	33
(I) TNF signaling to the activation of NF-kB	33
NF-kB activation and liver regeneration	34
(II) TNF-induced signaling pathways leading to	
hepatocyte cell death	36
b.APO-1/Fas (CD95/TNFRSF6) receptor	40
Role of Fas receptor in liver diseases	42
2.Redox signaling pathway	43
Nitric oxide	43
NO as inducer and inhibitor of apoptosis	43
NO as an inducer of necrosis	44
3. Proteins of the B-cell lymphoma-2 (BCl-2) family	45
Bcl-2 as an inhibitor of apoptosis	45
Bcl-2 as an inhibitor necrosis	49
4. Proteases	49
Caspases	49
Caspases activation and apoptosis	50
Death receptor-dependent procaspase-activation	51
Mitochondrion-mediated procaspase - activation	
pathway	52
Caspases activation and necrosis	52
Antifibrotic therapy	53
Examples for antifibrotic drugs	55

1-Interferon-α	55
Antifibrogenic activity of IFN-α	55
Side effects of IFN-α	56
2- Colchicine	57
3- Silymarin.	57
Medical importance of mushroom	58
Pleurotus Species	59
Characterization of polysaccharides extracted from	
Pleurotus ostreatus	60
β-Glucans as immunomodulating agent	62
Hepatoprotective activity of mycelial polysaccharides	
extracted from pleurotus ostreatus	65
Chapter II: Materials and Methods	67
Mushroom samples	67
Mushroom mycelium cultivation	67
1-Preparation of solid potato-dextrose agar medium for	
mushroom mycelia cultivation	67
2-Preparation of mushroom complete medium (MCM) for	
mycelium growth	68
Extraction of polysaccharopeptides from the submerged	
culture	68
Preparation of polysaccharopeptides suspension	68
Preparation of colchicine solution	69
Chemical induction of the liver fibrosis	69
Animals	69

Study design	70
Collection of body organs	71
Calculation of organ relative weights	71
Preparation of liver homogenates	71
Preparation of Tris/ sucrose buffer solution	72
Preparation of PBS buffer solution	73
Preparation of lysis buffer solution	73
[I] Toxicity studies	73
[II] Biochemical studies	73
Experiment (1): Determination of liver total protein	
concentration	73
Experiment (2): Determination of liver hydroxyproline	
concentration	76
Experiment (3): Determination of liver reduced glutathione	
(GSH) concentration	80
Experiment (4): Determination of malondialdehyde (MDA)	
concentration	82
Experiment (5): Determination of liver nitric oxide (NO)	
concentration	84
Experiment (6): Determination of transforming growth factor-	
β1 (TGF-β1) Concentration	88
Experiment (7): Determination of tumor necrosis factor- α	
(TNF-α) liver concentration	91
Experiment (8): Determination of liver tissue inhibitor of	
metalloproteinase-1 (TIMP-1) concentration	95

Experiment (9): Determination of gelatinolytic activities of	
liver matrix metalloproteinases (mmp-2 and mmp-9) by gelatin	
zymography	Ç
Experiment (10): Detection of liver Fas (CD95/TNFRSF6)	
receptor (MW 45 kDa) and BCl-2 (MW 26 kDa) proteins	
expression by western blot analysis	1
(a) Preparation of liver whole cell lysates	1
(b) SDS-PAGE	1
(c) Western blot analysis	1
Experiment (11): Determination of liver caspase-3 activity	1
Experiment (12): Relationships between the studied	
parameters in the treatment groups	1
[III] Histopathological studies	1
Preparation of H&E stained-slides and its examination under	
the light microscope.	1
Preparation of semi-thin sections and its examination under the	
light microscope	1
Preparation of the ultrathin sections and its examination under	
transmission electron microscope	1
Statistical analysis	1
1- Descriptive statistics	1
2- Dunnett test.	1
3- Survival analysis	1
4- Percentage of change	1
5- Independent sample t test, Pearson Correlations and	

nonparametric tests	123
Chapter III: Results	124
Chapter IV: Discussion	192
Conclusions	229
Recommendations	230
Summary	231
References	236
Appendix	
Approval of Ethical Committee.	305
Arabic Summary	
Arabic Abstract	

Acknowledgements

First and foremost deep thanks and gratitude are due to Almighty GOD, the most precious and the most Merciful, to WHOM I owe mercy, support and guidance in my whole life.

I would like to express my deep gratitude to my principal supervisor, *Prof. Dr. Fawzia M. Refaie*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for her endless help, perpetual guidance, sincere encouragement, valuable advice and criticism. It is a great honour for me to work under her supervision.

My thanks are due to *Prof. Dr. Amr Y. Esmat*, Vice Dean of Community Service and Environmental Develop Affairs and Professor of Biochemistry, Faculty of Science, Ain Shams University for suggesting the point, designing the plan of the study and his scientific support.

I would like to thank *Prof. Dr. Amel A. Soliman*, Professor of Histology, Faculty of Medicine, Ain Shams University, for her technical assistance, valuable comments and active supervision with the histological studies.

A special thank is due to *Dr. Germine M. Hamdy*, Lecturer of Biochemistry, Faculty of Science, Ain Shams University, for her technical assistance with the Western blot analysis.

I am also very grateful to *Prof. Dr. Amr M. Kareem*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for giving me the opportunity to work in his research laboratory.

I also thank my colleagues for being helpful in many ways.

Last but not least, I am deeply grateful to my parents for their love, support and everything essential, which I cannot even express in words

Assessment of the Antifibrotic Activity of Polysaccharides Extracted from Oyster Mushroom (*Pleurotus ostreatus*) Mycelium in the Rats Liver

Al Shaimaa Mohamed Taha Ali Ahmed

Abstract

The present study aims at evaluating the hepato-therapeutic activity of polysaccharopeptides (PSP) extracted from Pleurotus ostreatus mycelia on thioacetamide (TAA) - induced liver fibrosis in rats. Experimental hepatic fibrosis was induced in rats by intraperitoneal administration of 200 mg TAA/ Kg b.w./ twice weekly for 8 weeks. Two treatment modalities were implemented in this study; Colchicine (reference group) and PSP (therapeutic group). The results of this study revealed that PSP treatment (25 mg/ Kg b.w./ 3 times weekly for 5 weeks) of fibrotic rats restores hepatic matrix metalloproteinase (pro-MMP-2& -9) activities, the concentrations of MDA and GSH, as well as the relative protein expression of Fas receptor back to normal levels. However, more pronounced increases in hepatic TNF- α and NO concentrations were recorded, compared to untreated fibrotic rats. In addition, PSP treatment increased hepatic relative BCl-2 protein expression and produced lower elevations in the hepatic concentrations of TGF-β1, TIMP-1 and hydroxyproline, as well as hepatic caspase-3 activity, compared to TAA group. The histological examination of the liver tissue had demonstrated that PSP treatment reverses TAA-induced alterations, especially fibrosis (F0), apoptosis (G0) and necrosis (G0), compared to the normal control. In conclusion, experimental liver fibrosis can be treated by PSP, due to its immuno-stimulatory, antioxidant, antifibrotic and anti-necrotic activities.

Key words: Pleurotus ostreatus mycelium – Polysaccharopeptides – Thioacetamide
– Colchicine – TGF-β1 – Relative caspase-3 activity – Relative Fas receptor protein expression – Relative BCl-2 protein expression – Histological studies - Rats.

List of Abbreviations

	List of Abbreviations
A1R	Adenosine 1 receptor
AKt	serine/ threonine-specific protein kinase
ALP	Alkaline phosphatase
ALT	Alanine aminotransaminase
Apaf1	Apoptosis-activating factor1
APO-1	Apoptosis receptor
ASGP	Asialoglycoprotein
A-SMase	Acidic sphingomyelinase
AST	Aspartate aminotransaminase
ATP	Adenosine triphosphate
Bak	BC1-2-antagonist/killer
Bax	BC1-2-associated X protein
BCIP	Bromo-4-chloro-3-indolylphosphate
BCl-2	B-cell lymphoma-2
BH3	Bcl-2 homology region
Bid	BH3-interacting domain agonist
Bim	BC1-2-interacting mediator
BMP	Bone morphogenic proteins
BSA	Bovine serum albumin
cAMP	Cyclic adenosine monophosphate
CARD9	Caspase-recruitment domain 9
Caspases	Cysteinyl aspartate specific proteases
CAT	Catalase
CBP	cAMP-response element-binding protein
CCl ₄	Carbon tetrachloride
CCN2	Cysteine-rich 61/connective tissue growth factor
cGMP	Cyclic guanosine mono phosphate
CINC	Cytokine-induced neutrophil chemo attractant
Col 1A1	Collagen 1A1 gene
CR3	Complement receptor 3
CRD	Cysteune-rich domain
CSF	Colony stimulating factor
CTGF	Connective tissue growth factor

Cyt. C	Cytochrome C
DC	Dendritic cell
DD	Death domains
DDR	Discoidin domain receptor
DED	Death effector domains
DEVD-pNA	Asp-Glu-Val-Asp-p-nitroaniline
DISC	Death inducing signaling complexes
DTNB	5, 5'-dithiobis-2-nitrobenzoic acid
DTT	Dithiothreitol
EC	Endothelial cell
ECE	Endothelin converting enzyme
ECM	Extracellular matrix
EMT	Epithelial-mesenchymal transition
eNOS	Endothelial nitric oxide synthase
ER	Endoplasmic reticulum
ET-1	Endothelin-1
FADD	Fas associated protein with death domain
Fas	F ragment aoptosis stimulating
FasL	Fas ligand
FGF	Fibroblast growth factor
GCS	Gamma-glutamylcysteine synthetase
GPI	Glycosyl phosphatidyl inositol
GPx	Glutathione peroxidase
GR	Glutathione reductase
GSH	Reduced glutathione
H&E	Hematoxylin and Eosin
H ₂ O ₂	Hydrogen peroxide
HBV	Hepatitis C virus
HCV	Hepatitis B virus
HGF	Hepatocyte growth factor
HRP	Horseradish peroxidase
HSC	Hepatic stellate cell
HSP 70	Heat shock protein 70
iC3b	Inactivated complement 3b

ICAM	Intracellular adhesion molecules
IFN-α	Interferon alpha
IGF	Insulin-like growth factor
IKK	Inhibitor of kappa B kinase
IL	Interleukin
iNOS	Inducible nitric oxide synthase
kDa	Kilo Dalton
LacCer	Lactosylceramide
LAP	Latency-associated peptide
L-TGFβ	Latent-transforming growth factor beta
MAPK	Mitogen-activated protein kinase
MCM	Mushroom complete medium
MCP-1	Monocyte chemotactic peptide-1
MDA	Malondialdehyde
MIP2	Macrophage inflammatory protein 2
MMP	Matrix metalloproteinase
MPT	Mitochondrial Permeability Transition
MT1-MMP	Membrane type 1- Matrix metalloproteinase
MyD88	Myeloid differentiation factor 88
NADP ⁺	Nicotinamide adenine dinucleotide phosphate
NADPH	Reduced nicotinamide adenine dinucleotide phosphate
NAPQI	N-acetyl- <i>p</i> -benzoquinone imine
NASH	Hepatitis and nonalcoholic steatohepatitis
NBT	Niroblue tetrazolium chloride
NEDD	N-1-naphthylethylenediamine
NEMO/IKKγ	NF-kB Essential Modulator/
NFAT	Nuclear factor of activated T cell
NF-kB	Nuclear factor kappa B
NK	Natural killer cells
NKT	Natural killer T cells
NO	Nitric oxide
N-SMase	Neural sphingomyelinase
PAF	Platelet activating factor
PAGE	Polyacrylamide gel electrophoresis

PBS	Phosphate-buffered saline
PBST	Phosphate-buffered saline-Tween 20
PDGF	Platelet derived growth factor
PI3K	Pro-survival kinases phosphoinositol 3 kinase
PKC	Protein kinase C
PMSF	Phenylmethylsulfonyl fluoride
pNA	p-nitroaniline
PSP	Polysaccharopeptides
PTP	Permeability transition pore
PUMA	p53-up-regulated modulator of apoptosis
PVDH	Polyvinilidene difluoride
RIP	Receptor-interacting protein
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
R-SMAD	Receptor-associated SMAD
RTK	Receptor tyrosine kinase
SARA	SMDA anchor for receptor activation
SDS	Sodium dodecyl sulphate
SIGNR1	specific ICAM-3-grabbing non-integrin homolog-related1
SMAD	Sma and mothers against decapentaplegic (Mad) homologues
Smurf	SMAD ubiquitin regulatory factors
SOD	Super oxide dismutase
SP	Streptavidin-peroxidase
STAT	Signal transducer activator of transcription 3
SYK	Tyrosine kinase
TAA	Thioacetamide
TBA	Thiobarbituric acid
t-Bid	Truncated Bid
TCA	Trichloro acetic acid
TEMED	N, N, Ń, Ń Tetramethyl Ethylene Diamine
TGF-α	Transforming growth factor- alpha
Th	T helper cells

TIMP	Tissue inhibitor matrix metalloproteinase
TLRs	Toll like receptors
TMB	Tetramethyl-benzidine
TNF-R1	Tumor necrosis factor-receptor1
TNFRSF6	Tumor necrosis factor receptor superfamily 6
TNF-α	Tumor necrosis factor-alpha
TRADD	TNF-R1 associated death domain protein
TRAF	TNF-associated factor
TRAIL	TNF-α-related apoptosis-inducing ligand
TRAP2	Type 1 receptor-associated protein 2
TβR	Transforming growth factor receptor
UTP	Uridine triphosphate
VCl ₃	Vanadium chloride
VDAC	Voltage-dependent anion channel
VEGF	Vascular endothelial cell growth factor
α-SMA	Alpha-smooth muscle actin