Ultrastructural Study of Peripheral Blood Mononuclear Cells in Patients with Urinary Bladder Carcinoma

Thesis submitted for partial fulfillment of MSc. degree in Clinical and Chemical Pathology

BY

Omar Mohamed Helmy Sayyouh

M.B., B.Ch.

Under supervision of

Prof.Dr.Shahira Zayed

Professor of Clinical Pathology-Cairo University

Prof.Dr.Abeya Lotfi

Professor of Clinical Pathology-Theodor Bilharz Research Institute

Prof.Dr.Manal Wilson

Professor of Clinical Pathology-Cairo University

Faculty of Medicine-Cairo University

2010

Abstract

the morphologic appearance of PBMCs in the studied cases showed some signs of activity in cells of innate and adaptive immunity in superficial and invasive carcinoma respectively. Furthermore, it delineates inability of the cells of immune system to mount an effective immune response capable of preventing .

Key word

Mononuclear

Carcinoma

Pathology

Acknowledgement

I would like to express my sincere gratitude to Prof. Dr. Shahira Zayed. Professor of clinical pathology, Cairo university, Prof. Dr. Abeya Lotfy, Professor of clinical pathology, Theodor Bilharz Research Institute and Prof. Dr. Manal Wilson, Professor of clinical pathology, Cairo university for their sincere help, encouragement and assistant without which I would not have been able to accomplish this work.

Thanks to my dear family who always provide me with care and support. I would like also to thank my dear fiancée for her support.

I also would like to thank all my professor and colleagues in my department of Electron Microscopy at Theodor Bilharz Research Institute for their continuous help and valuable guidance

Table of Content

Subject	Page
Introduction and aim of work	1-2
Review of literature	3
Chapter 1: Electron microscopy principles	3-8
Chapter 2: Urinary bladder carcinoma and chronic cystitis	9-17
Chapter 3: Morphology of mononuclear cells	18-23
Chapter 4: Immunosurveillance and immunoediting	24-44
Subjects and methods	45-47
Results	48-65
Discussion	66-72
Summary and Conclusion	73-74
Recommendations	75
References	76-91

List of Tables

Table No	Title	page
Table 1	Urinary bladder TNM classification	11-12
Table 2	Summarized steps for preparation to TEM	47

List of Figures

Figure No	Title	Page
Figure 1	Small inactive lymphocyte	18
Figure 2	Human blood lymphocytes at low magnification	19
Figure 3	Transmission electron micrographs of lymphocytes at various stages of activation to effector function.	20
Figure 4	Normal Monocyte by Light Microscopy	21
Figure 5	A human blood monocyte at low magnification	22
Figure 6	The professional antigen-presenting cells	23
Figure 7	The three Es of cancer immunoediting	27
Figure 8	A proposed model for the elimination phase of the cancer immunoediting process	28
Figure 9	Antigen presentation stimulates T cells to become either "cytotoxic" CD8+ cells or "helper" CD4+ cells	36
Figure10	Natural Killer Cells: Mechanism of action	37
Figure11	The dual roles of autophagy in T-cell life and death during growth factor withdrawal	39
Figure12, 13, 14	TEM micrograph of normal lymphocyte	48-49
Figure15, 16, 17, 18	TEM micrograph of normal lymphocyte isolated from a chronic cystitis patient.	50-52
Figure19	TEM micrograph of lymphoplasmacytic cell isolated from chronic cystitis patient	52
Figure20, 21, 22	TEM micrograph of lymphocyte isolated from a patient with noninvasive bladder carcinoma	53-54

Figure23	TEM micrograph of a normal lymphocyte isolated from a patient with noninvasive bladder carcinoma	55
Figure24	TEM micrograph of mononuclear cell consistent in morphology with dendritic cell isolated from a patient with noninvasive bladder carcinoma.	55
Figure25	TEM micrograph of monocyte isolated from a patient with noninvasive bladder carcinoma	56
Figure 26	TEM micrograph of lymphocyte (most probably T cell) isolated from a patient with noninvasive bladder carcinoma	56
Figure 27	TEM micrograph of lymphocyte (mainly B cell surrounded by T cells) isolated from a patient with noninvasive bladder carcinoma	57
Figure 28	TEM micrograph of lymphocyte isolated from a patient with invasive bladder carcinoma	58
Figures 29, 30	TEM micrograph of mononuclear cell isolated from a patient with invasive bladder carcinoma	59
Figure 31	TEM micrograph of mononuclear cell (mainly B cell) isolated from a patient with invasive bladder carcinoma.	60
Figures 32, 33, 34	TEM micrograph of mononuclear cell isolated from a patient with invasive bladder carcinoma	60-61
Figure 35	TEM micrograph of a normal mononuclear cell isolated from a patient with invasive bladder carcinoma	62
Figure 36	TEM micrograph of a morphologically normal mononuclear cell containing few vacuoles with amorphous material	62
Figure 37	TEM micrograph of a mononuclear cell, yet containing some vacuoles (V) in the cytoplasm	63
Figure 38	TEM micrograph of a lymphocytes. The cell shows increase in mitochondria	64
Figure39	TEM micrograph of a mononuclear cell consistent with cytotoxic T cell	65

List of Abbreviations

APCs Antigen presenting cells

CAD Caspase-activated DNase

CTL Cytotoxic T lymphocyte

DC Dendritic cell

DISC Death-inducing signaling complex

EM Electron microscope

FADD Fas associated death domain

FH Ficoll Hypaque

GZMs Granzymes

IFN- Υ Interferon Υ

LGL Large granular lymphocyte

LVEM Low voltage electron microscope

M-CSF Macrophage colony-stimulating factor

MVB Multivesicular body

NK Natural killer

PBMCs Peripheral blood mononuclear cells

PBS Phosphate buffer saline

PFR Perforin

PMN Polymorphonuclear

REM Reflection electron microscope

RER Rough endoplasmic reticulum

RHEED Reflection high energy electron diffraction

RHELS Reflection high-energy loss spectrum

SEM Scanning electron microscope

SPLEEM Spin-polarized low-energy electron microscopy

STEM Scanning transmission electron microscope

TBRI Theodor Bilharz Research Institute

TCC Transitional cell carcinoma

TCR T cell receptor

TEM Transmission electron microscope

TH T helper cell

TNF-a Tumor necrosis factor-a

TRAIL TNF-related apoptosis-inducing ligand

UTI Urinary tract infection

Introduction and Aim of Work

Bladder carcinoma is the second most frequent genitourinary tumor and is a significant cause of morbidity and mortality (Jemal *et al.*, 2004)

More than 90% of urothelial cancer in the bladder is transitional cell carcinoma (Lamm and Torti 1996). Other important histological types include squamous cell carcinoma and adenocarcinoma.

This neoplasm accounts for 30.3 % of the total cancer incidence and is ranked first among all types of cancer recorded in Egyptian males (El-Mawla *et al*, 2001)

The majority of urothelial tumors are superficial when the patient first present, but despite adequate resection of the primary lesion the recurrence rate is particularly high. In a small but significant group of patients the tumor is primary invasive or subsequently can progress and lead to death (Koenig *et al*, 1999).

Clinical outcome in patients with bladder cancer is determined by a variety of factors such as size, multicentricity, histologic grade, stage and the contribution of the immune system to control the tumor growth (Droller *et al.*, 1998). Virtually all the effector components of the immune system have the potential to the eradication of tumor cells (Greenberg 1994). However, tumor progression, often seen in the presence of substantial lymphocytic infiltration, suggests that the cells are not capable of mounting an effective immune response to control tumor growth.

Earlier studies held to evaluate the immune system of patients with bladder carcinoma revealed presence of immunological abnormalities in respect to count, subsets and function of immune effector cells (Soygur *et al*, 1999). These abnormalities were found to correlate with the stage and grade of tumor (Kastelan and Lukac *et al*, 2003). Furthermore changes of lymphocytes

structural morphology from resting to active state after immunotherapy were detected by Theano *et al* (2002).

Aim of the Study

The main aim of this work is to further evaluate the immune system by studying the ultrastructure of peripheral blood mononuclear cells (PBMCs) and to correlate the changes that might occur in these cells with tumor stages. This may be of value in understanding the pathogenesis of this lesion and in determining the approach to treatment through immunomodulation.

Chapter 1 Electron Microscopy Principles

An electron microscope is a type of microscope that produces an electronically-magnified image of a specimen for detailed observation. The electron microscope (EM) uses a particle beam of electrons to illuminate the specimen and create a magnified image of it. The microscope has a greater resolving power (magnification) than a light-powered optical microscope, because it uses electrons that have wavelengths about 100,000 times shorter than visible light (photons), and can achieve magnifications of up to 1,000,000x, whereas light microscopes are limited to 1000x magnification. The electron microscope uses electrostatic and electromagnetic "lenses" to control the electron beam and focus it to form an image. These lenses are analogous to, but different from the glass lenses of an optical microscope that forms a magnified image by focusing light on or through the specimen. For EM, the ultrastructure must be preserved as close to the in vivo situation as possible (Hall, 1991).

Types:

- 1- Transmission electron microscope (TEM)
- 2- Scanning electron microscope (SEM)
- 3- Reflection electron microscope (REM)
- 4- Scanning transmission electron microscope (STEM)
- 5- Low voltage electron microscope (LVEM)

Transmission electron microscope (TEM):

Transmission electron microscopy (TEM) is a microscopy technique whereby a beam of electrons is transmitted through an ultra thin specimen, interacting with the specimen as it passes through. An image is formed from the interaction of the electrons transmitted through the specimen; the image is magnified and focused onto an imaging device, such as a fluorescent screen, on

a layer of photographic film, or to be detected by a sensor such as a CCD camera. TEMs are capable of imaging at a significantly higher resolution than light microscopes, owing to the small wavelength of electrons. This enables the instrument's user to examine fine detail—even as small as a single column of atoms, which is tens of thousands times smaller than the smallest resolvable object in a light microscope. TEM forms a major analysis method in a range of scientific fields, in both physical and biological sciences. TEMs find application in cancer research, virology, materials science as well as pollution and semiconductor research. At smaller magnifications TEM image contrast is due to absorption of electrons in the material, due to the thickness and composition of the material. At higher magnifications complex wave interactions modulate the intensity of the image, requiring expert analysis of observed images. Alternate modes of use allow for the TEM to observe modulations in chemical identity, crystal orientation, electronic structure and sample induced electron phase shift as well as the regular absorption based imaging (Robards, 1993).

Sample Preparation:

Chemical fixation for biological specimens: aims to stabilize the specimen's mobile macromolecular structure by chemical crosslinking of proteins with aldehydes such as formaldehyde and glutaraldehyde, and lipids with osmium tetroxide.

Dehydration: freeze drying, or replacement of water with organic solvents such as ethanol or acetone, followed by critical point drying or infiltration with embedding resins

Embedding biological specimens: after dehydration, tissue for observation in the transmission electron microscope is embedded so it can be sectioned ready for viewing. To do this the tissue is passed through a 'transition solvent' such as

epoxy propane and then infiltrated with a resin such as Araldite epoxy resin; tissues may also be embedded directly in water-miscible acrylic resin. After the resin has been polymerised (hardened) the sample is thin sectioned (ultrathin sections) and stained - it is then ready for viewing.

Sectioning: produces thin slices of specimen, semitransparent to electrons. These can be cut on an ultramicrotome with a diamond knife to produce ultrathin slices about 60-90 nm thick. Disposable glass knives are also used because they can be made in the lab and are much cheaper.

Staining: uses heavy metals such as lead, uranium or tungsten to scatter imaging electrons and thus give contrast between different structures, since many (especially biological) materials are nearly "transparent" to electrons (weak phase objects). In biology, specimens can be stained "en bloc" before embedding and also later after sectioning. Typically thin sections are stained for several minutes with an aqueous or alcoholic solution of uranyl acetate followed by aqueous lead citrate (Glauert, 1974).

<u>Techniques of Transmission Electron Microscopy:</u>

- 1- Conventional EM
- 2- Immuno-EM

Electron microscopy can be used to study the detailed microarchitecture of tissues or cells. Immuno-EM allows the detection of specific proteins in ultrathin tissue sections. Antibodies labeled with heavy metal particles (e.g. gold) can be directly visualized using transmission electron microscopy. While powerful in detecting the sub-cellular localization of a protein, immuno-EM can be technically challenging, expensive, and require rigorous optimization of tissue fixation and processing methods.

Electron cryomicroscopy

(cryo-EM or sometimes cryo-electron microscopy) is a form of electron microscopy (EM) where the sample is studied at cryogenic temperatures (generally liquid nitrogen temperatures). It allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment (Harris, 1997).

Scanning electron microscope (SEM):

The scanning electron microscope (SEM) is a type of electron microscope that images the sample surface by scanning it with a high-energy beam of electrons in. The electrons interact with the atoms that make up the sample producing signals that contain information about the sample's surface topography, composition and other properties such as electrical conductivity (Roomans, 1990).

Sample Preparation:

All samples must also be of an appropriate size to fit in the specimen chamber and are generally mounted rigidly on a specimen holder called a specimen stub. Several models of SEM can examine any part of a 6-inch (15 cm) semiconductor wafer, and some can tilt an object of that size to 45° For conventional imaging in the SEM, specimens must be electrically conductive, at least at the surface, and electrically grounded to prevent the accumulation of electrostatic charge at the surface. Metal objects require little special preparation for SEM except for cleaning and mounting on a specimen stub. Nonconductive specimens tend to charge when scanned by the electron beam, and especially in secondary electron imaging mode, this causes scanning faults and other image artifacts. They are therefore usually coated with an ultrathin coating of electrically-conducting material, commonly gold, deposited on the sample either by low vacuum sputter coating or by high vacuum evaporation. Conductive materials in current use for specimen coating include gold,