Angiogenesis in Hematologic Malignancies

Essay

Submitted for partial fullfilment of Master degree in Clinical and Chemical pathology

Presented by

Marwa Salah Farhan M.B.,B.Ch.

Under supervision of

Prof. Dr. Hanaa Hamed Arnaaot

Professor of Clinical Pathology Cairo University

Dr. Noha Mohamed Hosny Shahin

Lecturer of Clinical Pathology Cairo University

> Faculty Of Medicine Cairo University 2005

Abstract

Increased angiogenesis is important in the pathophysiology of solid tumors as well as haematological malignancies. Different angiogenic factors were found to cause increased angiogenesis. By measuring these factors in patients of haematological malignancies, they were found to be increased compared to normal controls. This led to increased angiogenesis in the bone marrow of these patients.

These facts can be used in the prognosis of haematological malignancies.

Antiangiogenic agents can be used in the treatment of these patients, which decreases the doses of chemotherapy.

Key Words:

Angiogenesis, Leukemia, Antiangiogenic therapy.

Acknowledgement

Fitrst and foremost thanks to ALLAH

I would like to express my sincere gratitude to Prof. Dr. *Hanaa Hamed Arnaaot*, Professor of Clinical Pathology, Faculty of Medicine,

Cairo University, for her kind guidance and supervision.

I am also grateful to Dr. *Noha Mohamed Hosny Shahin*, Lecturer of Clinical Pathology, Cairo University, for her kind advice and sincere help.

Last but not least, I thank all my colleagues who gave me a hand while working in this assay, to my parents, my sisters and my husband.

Contents

	Page
Introduction & Aim Of Work	
Factors Affecting Angiogenesis	
Promotors of Angiogenesis:	
VEGF	6
FGF	14
Angiopoietins	15
PDGF	18
TGF	20
Endogenous Inhibitors Of Angiogenesis	23
Angiostatin	24
Endostatin	28
Arresten	36
Canstatin	37
Tumstatin	38
Tumor Angiogenesis	40
Role of angiogenesis in tumor growth	41
Human tumors and spontaneous animal tumors switch	
to an angiogenic phenotype	47
Angiogenesis in Haematologic Malignancies	63
Bone Marrow Angiogenesis in Multiple Myeloma	66
Angiogenesis in AML	71
Bone marrow angiogenesis in myelofibrosis with	
myeloid metaplasia	77
Angiogenesis in acute promyelocytic leukemia	81
Angiogenesis in CLI	Q.1

Angiogenesis as a Target for Cancer Therapy	90
Indirect angiogenesis inhibitors	91
Direct angiogenesis inhibitors	96
Synthetic angiogenesis inhibitors	99
Antiangiogenic Gene Therapy	101
Antiangiogenic Therapy In Haematologic	
Malignancies	113
Summary	127
Conclusion	130
References	131

List of abbreviations

AAV adeno-associated virus

aFGF acidic fibroblast growth factor

AML acute myeloid leukemia

Ang angiopoietin

APL acute promyelocytic leukemia

As2O3 arsenic trioxide

ATRA all-trans retinoic acid

bFGF basic fibroblast growth factor BMSCs bone marrow stromal cells

BrdU bromodeoxyuridine CAM chorioallantoic membrane

CEPs circulating endothelial precursor cells CLL chronic lymphocytic leukemia

CM conditioned media

CML chronic myelogenous leukemia

CMPDs chronic myeloproliferative disorders

COX-2 cyclooxygenase-2 CR complete remission EC endothelial cell

EGF epidermal growth factor

eNOS endothelial nitric oxide synthase

EPC endothelial progenitor cell FAB French-American-British Flt-1 fms-like tyrosine kinase-1

G-CSF granulocyte colony stimulating factor

GFP green fluorescent protein

GLUT glucose transporter GMA glycol-methacrylate

GM-CSF granulocyte-macrophage colony stimulating factor

HCC hepatocellular carcinoma
HGF hepatocyte growth factor
HIF hypoxia inducible factor
HMCLs human myelomacell lines
HSV-1s herpes simplex-1 viruses

HUVECs human umbilical vein endothelial cells

IFN interferon IL interleukin

IMiD immune modulatory drug JNK junctional N-terminal kinase

KDR kinase insert domain-containing receptor

LAP latency-associated peptide
MDS myelodysplastic syndrome
mg/kg milligram per kilogram
MLV murine leukemia virus

mm millimeters
MM multiple myeloma

MMM myelofibrosis with myeloid metaplasia

MMP matrix metalloproteinase
MVD microvascular density
ng/mL nanogram per milliliter
NC1 nontriple helical C-terminal

NK natural killer

PAI plasminogen activator inhibitor

PC prostate carcinoma

PCLI plasma cell labeling index

PCNA proliferating cell nuclear antigen

PCR polymerase chain reaction

PDE phosphodiesterase

PDGF platelet-derived growth factor

PIGF placenta growth factor

RARα retinoic acid receptor alpha

RT-PCR reverse transcription-polymerase chain reaction

SCID severe combined immunodeficiency

SiRNA small interfering RNA TGF transforming growth factor

tk thymidine kinase

TLL T-cell lymphoma leukemia

TNP-470 Takeda neoplastic product-470

TSP/THBS thrombospondin tum tumastatin

uPA urokinase-like plasminogen activator VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor

VHL von Hippel Lindau

VPF vascular permeability factor vWF von Willebrand factor

WM Waldenstrom's macroglobinemia

List of Figures

Number	Title	Page
Fig. 1	Multiple functions of VEGF	10
T1 4		20
Fig. 2	Amino acid sequence of human endostatin	29
Fig. 3	Model for the antiangiogenic mechanism of endostatin	33
Fig. 4	Tumor growth curves of subcutaneous xenotransplants of	53
	human liposarcoma in severe combined immunodeficient	
	(SCID mice).	
Fig. 5	The hematopoietic microenvironment	63
Fig. 6	Leukemia in human bone marrow	65
Fig. 7	Bone marrow biopsy specimens illustrating increa	70
rig. /	microvessels in newly diagnosed multiple myeloma.	70
	inicrovessers in newly diagnosed multiple mycroma.	
Fig. 8	BM angiogenesis in patients with MM	71
Fig. 9	Vascularity of normal and AML marrow specimens	73,
	-	74
Fig. 10	High-power view of vascularity of normal and AML	75
	marrow specimens	
Fig. 11	Visual microvessel grades of bone marrow angiogenesis	79
	in patients with myelofibrosis with myeloid metaplasia	
Fig. 12	Microvessels in APL and control bone marrow biopsy	83
	specimens	
Fig. 13	Vessel density analysis using CD34 mAb staining.	85
Fig. 14	Immunohistochemical staining of VEGF protein.	87
Fig. 15	Staining of BCLL BM with FVIII-RA	88
Fig. 16	Types of angiogenesis inhibitors	91
Fig. 17	Change of MVD during therapy with SU5416 in a	116
	responding patient.	
Fig. 18	Induction of apoptosis and necrosis in a patient with AML	117
	following SU5416 therapy	
Fig. 19	Immunohistochemical staining of bone marrow sections.	119
Fig. 20	Microvessels in APL bone marrows at diagnosis and	121
	remission	
Fig. 21	VEGF staining in APL bone marrows at diagnosis and	121

remission

List of Tables

Number	Title	Page
Table 1	Angiogenesis Inhibitors	90
Table 2	Impact of Oncogenes or Potential Oncogenes on Tumor Angiogenesis	92
Table 3	Antiangiogenic Activity of Drugs Targeting an Oncogene	94
Table 4	Direct Angiogenesis Inhibitors	97

Introduction

Angiogenesis is defined as the production of new blood vessels from an existing vascular network. It consists of a stepwise process of activation of existing endothelial cells, degradation of the extracellular matrix (ECM), and proliferation and migration of endothelial cells toward the angiogenic stimulus. Degradation of the ECM components by matrix metalloproteinases (MMPs) allows the migrating cells to invade along a front and organize themselves into a three-dimensional matrix. Subsequently, vessel patency is established when intra- and intercellular vacuoles coalesce.

Angiogenesis is important in a variety of physiologic and pathologic disorders. It is a central element in embryogenesis, ovulation, wound healing, diabetic retinopathy, and rheumatoid arthritis and in the establishment and spread of malignant tumors. Angiogenic factors include direct angiogens, indirect angiogens, and integrins. Direct angiogens stimulate the formation of new blood vessels directly. Indirect angiogens promote neovascular formation by paracrine stimulation of direct angiogens. Integrins mediate interactions between the developing vessels and components of the extracellular matrix.

Tumors can exist for months or years without neovascularization. However, with clonal progression, subsets of the tumor population may undergo a switch to an angiogenic phenotype. This switch involves a change in the local balance between pro- and antiangiogenic factors. Clones of the tumor with a proangiogenic phenotype may produce their own angiogenic growth factors, mobilize angiogenic substances from the ECM, and recruit host cells such as monocytes/macrophages to produce angiogenic molecules.

Recently, however, it has become clear that angiogenic factors play an important role in the pathophysiology of lymphocytic and myelogenous leukemias, myelodysplastic syndromes, myeloproliferative diseases, multiple myeloma, and non-Hodgkin's lymphomas.

The endothelial cell proliferation and microvessel formation are regulated by a wide range of soluble mediators, including angiogenin, angiopoietin-1, angiopoietin-2, basic fibroblast growth factors, vascular endothelial growth factor (VEGF), VEGF-D, angiostatin and endostatin. This correlates with clinical characteristics in leukemia and non-Hodgkin's-lymphoma and the serum/plasma concentrations serve as predictors of poor prognosis.

Vascular endothelial growth factor (VEGF) is a principal direct angiogen. By binding to 1 of 3 receptors (VEGFR-1, -2, or -3), it influences vasculogenesis during embryogenesis, physiologic and neoplastic angiogenesis, and lymphangiogenesis. Evidence now suggests that VEGF has a major role in the development and progression of hematologic malignancies such as acute leukemia, chronic leukemia, myelodysplasia, non-Hodgkin's lymphoma, and multiple myeloma. Potential therapeutic interventions to interrupt the VEGF signaling pathway of malignancy include antibodies that neutralize the growth factor and small molecules that inhibit the receptor tyrosine kinase activity of VEGF receptors.

Aim Of Work:

To explore the role of angiogenesis in haematologic malignancies and its relationship with the progression of acute and chronic leukemia. Recent applications of anti-angiogenic agents which interfere with or block leukemia will be reviewed.

Factors Affecting Angiogenesis

Angiogenesis (angio'gen'esis) - the growth of new blood vessels - is an important natural process occurring in the body, both in health and in disease.

The process of angiogenesis occurs as an orderly series of events where diseased or injured tissues produce and release angiogenic growth factors (proteins) that diffuse into the nearby tissues (*Madri et al.*,1996).

The angiogenic growth factors bind to specific receptors located on the endothelial cells (EC) of nearby preexisting blood vessels. Once growth factors bind to their receptors, the endothelial cells become activated. Signals are sent from the cell's surface to the nucleus. The endothelial cell's machinery begins to produce new molecules including enzymes (*Rosen*, 2002).

Enzymes dissolve tiny holes in the sheath-like covering (basement membrane) surrounding all existing blood vessels

The endothelial cells begin to divide (proliferate), and they migrate out through the dissolved holes of the existing vessel towards the diseased tissue (tumor). Specialized molecules called adhesion molecules, or integrins (avb3, avb5) serve as hooks to help pull the sprouting new blood vessel sprout forward.

Additional enzymes (matrix metalloproteinases, or MMP) are produced to dissolve the tissue in front of the sprouting vessel tip in order to accommodate it. As the vessel extends, the tissue is remolded around the vessel.

Angiogenesis is active during development but is relatively quiescent during normal adult life. The process can be resumed after tissue injury, for example, but is otherwise thought not to undergo constant change.