

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

STUDY OF THE MAJOR ELEMENTAL CONSTITUENTS AND ULTRASTRUCTURE OF AVIAN EGGSHELL ADOPTING LASER AND SEM TECHNIQUES

By

ZIENAB ABDEL-FATTAH ABDEL-SALAM

Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Laser Science

Department of Environmental, Photohcemical & Agricultural Applications

National Institute of LaserEnhanced Sciences (NILES)

Cairo University

2005

Bacn

SUPERVISION COMMITTEE

TITLE: STUDY OF THE MAJOR ELEMENTAL
CONSTITUENTS AND ULTRASTRUCTURE OF AVIAN
EGGSHELL ADOPTING LASER AND SEM
TECHNIQUES

NAME: ZIENAB ABDEL-FATTAH ABDEL-SALAM

This thesis for the degree of M.Sc. had been approved by:

Dr. Mohamed Abdel Harith Mohamed

Professor of laser physics

National Institute of LaserEnhanced Sciences (NILES)

Cairo University

Dr. Alaa Eldin Mohamed Abdou

Assistant professor of poultry breeding faculty of agriculture
Cairo University

Alaa Abduu

ABSTRACT

The avian eggshell is composite structure of calcium carbonate in association with organic components. Calcium, magnesium, and sodium are major inorganic constituents of the avian eggshell. However, Ca distribution is not homogenous throughout the shell thickness, its relative concentration increases from inside to outside. This phenomenon is more pronounced after hatching indicating the consumption of the inner layer contents by the embryo during its development. On the other hand Mg and Na concentrations in the internal layers of the eggshell before hatching are higher than after hatching for the same reasoning. It has been suggested that an increase in magnesium content of the shell is directly related to an increase in shell hardness. In the present work Laser Induced Breakdown Spectroscopy (LIBS) technique has been used to study the avian eggshell elemental composition before and after hatching. Depth profiling of the shell is also carried out to follow-up different elements throughout the shell thickness using the same laser spectroscopic technique. The evaluation of the LIBS spectra of the examined samples provided us with qualitative information about the consumption of different elements during incubation. Scanning electron microscopy was also used to assess the relationship between layers of the eggshell before and after hatching. The thicknesses of the mammillary, palisade, vertical crystal, and cuticle layers relative to the total eggshell thickness were measured before and after hatching. The percent contribution of the layers was different in the thinnest and thickest eggshell after and before hatching respectively. To confirm the previous results concerning the distribution of calcium through the shell thickness energy Dispersive X-ray Spectroscopy (EDS) has been used. In addition preliminary

Alon Abdou

results have been obtained in a study of the effect of laser exposure of avian eggs prior incubation on the hatchability.

The milestone of the present thesis is to explore the possibility of harnessing new technological tools such as LIBS in poultry science. Of great interest is performing in *situ* studies in incubation centers for quality control and improvement of the productivity.

Alan Abdon

ACKNOWLEDGMENT

All thanks, respect, love and appreciation are due to my supervisor **Dr.**Mohamed Abdel Harith, professor of Laser physics, National Institute of Laser Enhanced Sciences, Cairo University for suggesting the problem, planning the study and close supervision. His helpful suggestions and criticism throughout the study are highly appreciated.

I am grateful to **Dr. Alaa Eldin Abdou**, Assistant professor of poultry breeding, faculty of agriculture, Cairo University for his close supervision and continuous interest, as well as for his helpful suggestions and criticism through the course of study.

I am also grateful to **Dr. Mohamed El-Menawe**y, Assistant professor of poultry breeding, faculty of agriculture, Cairo University for being helpful in the incubation center and in the collection of samples and data.

Thanks are extended to **Dr. Sameh Abdel- Salam**, Assistant professor of animal breeding, faculty of agriculture, Cairo University for his helpful assistance in the statistical analysis.

Acknowledgment is extended to all my colleagues in the group of laser atomic spectroscopy at NILES.

Deep thanks and love to my father, mother, brothers, and sister for their encouragement and providing a good atmosphere during my work in this thesis.

CONTENTS

	Page
I Introduction	
1.1 The egg	1
1.2.1 The egg formation	1
1.2.2 The eggshell	7
1.2.3 Eggshell structure	7
1.2.4 Some of the elements in eggshell	11
1.2.4.1 Deposition of calcium on the shell	11
1.2.4.2 Deposition of carbonate on the shell	17
1.2.4.3 The dynamics of shell deposition	19 ^t
1.3 Laser Induced Breakdown Spectroscopy (LIBS)	21 !
1.4 Scanning Electron Microscopy (SEM) in studying of	ļ
eggshell structure	23
1.5 Effect of light on eggs	23
1.6 Aim of the work	24
II Materials and Methods	1
2.1 Materials	28
2.2. Methods	28
2.2.1. LIBS experimental setup	28
2.2.2. Eggshell internal structure using the scanning electron	<u> </u>
microscope	32
2.2.2.1 The scanning electron microscope (SEM)	32
2.2.2.2 The SEM setup	33

2.2.2.3 Eggshell preparation for SEM	33
2.2.2.4 SEM measurements of the eggshell layers	36
2.2.3 Eggshell thickness measurements	36
2.2.4 Energy dispersive X-ray spectrometer (EDS)	36
2.2.4.1 Operating principles	36
2.2.5 Laser exposure	38
2.2.5 Laser exposure	38
Z.2.3.1360app X	
III Results and Discussion	
3.1 Elemental analysis of the eggshell using LIBS	
Technique	40
3.1.1 Concentration of magnesium	40
3.1.2 Concentration of sodium	47
3.1.3 Concentration of calcium	51
3.2 Depth profiling	56
3.3. SEM measurements	62
3.4. EDS analysis	66
3.5. Self absorption Effect	70
3.6 Effect of laser exposure on hatchability	73
Conclusion	75
	77
References	, ,
Arabic summary	

LIST OF FIGURES

		Page
Figure 1	The structure of an egg	2
Figure 2	Reproductive tract anatomy of the hen	3
Figure 3a	Not fertile egg	6
Figure 3b	Fertile egg	6
Figure 4	Cross-sectional scanning electron micrograph through	
	the eggshell of a broiler breeder	10
Figure 5	Diagrammatic cross-sectional representation of the	
	tissues comprising the reproductive tract of hen	15
Figure 6	Calcium deposition steps and sources	16
Figure 7	Block diagram of the experimental setup of LIBS	
	system	28
Figure 8	Schematic diagram showing the electron / specimen interactions in the SEM	34
Figure 9	Setup for exposing eggs to laser light	39
Figure 10a	Emission spectrum of the eggshell from 260 to	
	450nm	43
Figure 10b	Emission spectrum of the eggshell from 425 to	
	630nm	43
Figure 11	Emission spectrum of the eggshell showing the Mg	
	lines intensity before & after hatching	44
Figure 12	Emission spectrum of the eggshell-showing the Mg	···
	spectral line at 285.21 nm used in our calculations	44
Figure 13	Calibration curve of Mg	45
Figure 14	Magnesium content of eggshell in ppm before and after	
	hatching	45

gure 15	LIBS spectrum of the eggshell showing the Na	
	intensity before and after hatching	48
gure 16	Calibration curve of Na	49
gure 17	Sodium content of eggshell in ppm before and after	٠.
	hatching	49
gure 18a	LIBS spectrum of Ca in the eggshell from 370 to 405	
	nm	53
igure 18b	LIBS spectrum of Ca in the eggshell from 425 to 455	
	nm	53
gure 18c	LIBS spectrum of Ca in the eggshell from 610 to 660	
-	nm	54
igure 19a	scanning electron microscopy (SEM) micrographs of	
	the craters produced by 20 laser shots. (35x)	58
igure 19b	Scanning electron microscopy (SEM) micrographs of	
	the craters produced by 20 laser shots. (100x)	58
igure 20	Panoramic 3-D spectra demonstrating the depth profile	
J	of the eggshell	59
igure 21a	3-D spectra demonstrating the depth profile of the	
-6	eggshell from 370 to 400nm	59
igure 21b	3-D spectra demonstrating the depth profile of the	
	eggshell from 405 to 435nm	60
igure 21c	3-D Spectra demonstrating the depth profile of the	•
<i>3</i> = 2.2	eggshell from 520 to 620 nm	60
igure 22	Histogram of the depth profiling of eggshell at three	
1 15010 22	different Calcium wavelengths	61
igure23a	Cross-sectional scanning electron micrograph through	
-0	the eggshell of a broiler breeder before hatching	63
igure 23b	Cross-sectional scanning electron micrograph through	

	the eggshell of a broiler breeder after hatching	64		
Figure 24	The average physical thickness of 98 samples before			
	and after hatching	65		
Figure 25a	EDS spectrum of the eggshell before hatching	68		
Figure 25b	EDS spectrum of the eggshell after hatching	69		
Figure 26	Typical self absorbed profiles of the strong Ca II	!		
	doublet at 393.3 and 396.8 nm	72		
		ĺ		
		1		