Clinical Significance of Serum Des-Gamma Carboxy Prothrombin in Hepatocellular Carcinoma

Chesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Shimaa Mostafa Ismail Mostafa

M.B.B., Ch. - Ain Shams University

Under Supervision Of

Prof. Hanzada Ibrahim Abdel-Fattah

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Abeer Ibrahim Abdel-Mageed

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Dr. Ashraf Mohamad AlBreedy

Lecturer of Tropical Medicine Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2013

الأهمية الإكلينيكية لبروتين قصر جاما كربوكسي البروثرومبين في مصل الدم في حالات سرطان الكبد

رسالة

توطئة للمصول على ورجة (الماجستير في الباثولوجيا الالاكلينيكية والكيميائية

مقرمة من

الطبيبة / شيماء مصطفى إسماعيل مصطفى

بكالوريوس الطب والجراحة كلية الطب – جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ هان زادة إبراهيم عبد الفتاح

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب _ جامعة عين شمس

الدكتور / عبير إبراهيم عبد المجيد

أستاذ مساعد الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الدكتور/ أشرف محمد البريدي

مدرس طب الأمراض المتوطنة والمناطق الحارة كلية الطب _ جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٣

First of all, all gratitude is due to Allah for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my sincere gratitude to **Prof.** Hanzada Ibrahim Abdelfattah Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and the great effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I am also grateful to **Dr. Abeer Ibrahim Abdelmegeed** assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her guidance, continuous assistance, sincere supervision, great support, kind advices and valuable suggestion.

I would like also to express my sincere appreciation and gratitude to **Dr.Ashraf Mohamed Albareedy**, Lecturer of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his instructive supervision, encouragement, unlimited support and for participation in the practical part of this work.

I would like also to express my sincere appreciation to **Dr.Doaa Mostafa Awad**, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her support and for offering me much of her time and effort.

Shimaa Mostafa Ismail Mostafa

Contents

Subject	Page No.
List of Abbreviations	III
List of Tables	VII
List of Figures	<i>VIII</i>
INTRODUCTION AND AIM OF THE WO	RK1
REVIEW OF LITERATURE	
I. HEPATOCELLULAR CARCINOMA	(HCC)4
A. Epidemiology of HCC	4
B. Risk Factors of HCC	6
C. Pathogenesis of HCC	16
D. Histopathological Types of HCC	23
E. Histopathological Pattterns of HCC	25
F.Histological Grading of HCC	26
G.Staging Systems of HCC	28
H.Diagnosis of HCC	
I.Prognosis of HCC	66
J.Surveillance And Screening of HCC	68
K-Prevention of Hepatocellular Carcinoma	70
II- DES GAMMA CARBOXY PROTHROM	IIN72
A. Biochemical Structure of DCP	72
B. Sources of DCP	75
C. Causes of Increase of DCP production	75
D. Clinical Utility of DCP	
E. Pathological Effects of DCP in HCC	85
F. Methods of Assay of DCP	89

SUBJECTS AND METHODS	96
RESULTS	117
DISCUSSION	130
SUMMARY & CONCLUSION	141
RECOMMENDATIONS	146
REFERENCES	147
ARABIC SUMMARY	—

List of abbreviations

AASLD : American association of the study of liver disease

AFP : Alpha fetoprotein

AFU : Alpha -L- fucosidase

AJCC : American Joint Committee on Cancer

ALP : Alkaline phosphotase

ALT : Alanine aminotransferase

AMP : Amino-2-methyl-1-propanol

AST : Aspartate aminotransferase

AU : Arbitrary unit

AUC : Area under the curve

BCL-2: B-cell lymphoma 2

BCLC : Barcelona clinic liver cancer

BCP : Bromocresol purple

CA 125 : Cancer antigen 125

Cdks : Cyclin dependant kinases

CEA : Carcinoembryonic antigen

CEUS : Contrast enhanced ultrasound

CLD : Chronic liver disease

CLIP : Cancer Liver Italian Programme

CNB : Core needle biopsy

CT : Computed tomography

CV : Coefficient Variation

DAB : Diamino-benzidine

DCP: Des- gamma carboxyprothrombin

DN : Dysplastic nodule

DNA : Deoxy ribonucleic acid

EASL : European association of study of liver disease

ECF : Epithelial fibroblastoid conversion

ECLIA : Electrochemiluminescence immunoassay

EDTA : Ethylene diamine tetra acetate

EIA : Enzyme immunoassay

ELISA : Enzyme linked immunosorbant assay

EMT : Epithelial to mesenchymal transition

FHCC: Fibrolamellar hepato cellular carcinoma

FNAB : Fine needle aspiration

GGT : Gamma-glutamyl transferase

GPC3 : Glypican-3

HBV: Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV: Hepatitis C virus

HGF : Hepatocyte derived growth factor

HIF-1a : Hypoxia inducible factor-1 a

HRP: Horseradish Peroxidase

HTEP1 : Human telomerase associated protein 1

hTERT : Human telomerase reverse transcriptase

HUVEC: Human umbilical vein endothelial cells

IC : Immune complex

IEP : Immuno electrophoresis

IFN: Interferon

IGF-II : Insulin like growth factor –II

INR : International Normalized Ratio

JAK : Jenus Kinase activator system

KDR : Kinase insert domain receptor

LDH : Lactate dehydrogenaseLDL : Lower detection limit

LDLT : Living donor liver transplantation

MAPK: Mitogen activated protein kinase

MPCT : Multiphasic helical CT

MRI : Magnetic resonance imaging

MRN : Macroregenerative nodule

mRNA : Messenger ribonucleic acid

NAFLD: Non alcoholic fatty liver disease

NASH : Non alcoholic steatohepatitis

NCI : National cancer institute

NHL : Non Hodgkin lymphoma

NPV : Negative Predictive Value

PBS: Phosphate buffered saline

PCL-y: Phospholipase C-y

PCR : Polymerized chain reaction

PET : Positron emission tomography

PHC: Primary hepatic cancer

PIVKA-II: Protein induced by vitamin K absence or antagonist –II

PPV : Positive Predictive Value

PT : Prothrombin time

PVT : Portal vein thrombosis

ROC : Receiver-operating characteristic

RT-PCR: Reverse Transcriptase PCR

SCCA : Squamous cell carcinoma antigen

SD : Standard deviation

SHF : Schistosomal hepatic fibrosis

STAT 3 : Signal transforming activation transducer 3

TGF- β1 : Transforming growth factor beta 1

TNF- α : Tumor necrosis factor – α

TNM: Tumor node metastasis

US : Ultrasonography

USA : United States of America

VEGF : Vascular endothelial growth factor

VEGFR :Vascular endothelial growth factor receptor

VKOR : Vitamin K epoxide reductase

List of Figures

Fig. No.	Title	Page No.
1	Regional variations in the incidence rates of hepatocellular carcinoma categorized by ageadjusted incidence rates.	5
2	Diagram of angiogenic switch.	23
3	Small nodule of HCC.	24
4	Macroscopic appearance of HCC arising in a cirrhotic liver.	25
5	Western blot analysis of human recombinant AFP.	48
6	Domain structure of prothrombin.	73
7	Production of normal prothrombin and DCP in hepatic cells.	74
8	Proposed mechanisms of production of DCP in HCC.	77
9	Physiological function of DCP.	87
10	Sandwich ELISA steps.	91
11	The principle of immunohistochemistry.	95
12	Results of immunohistochemical staining of HCC for AFP& DCP.	95
13	ROC curve analysis showing the diagnostic performance of AFP& DCP in discriminating chronic viral Hepatitis group from normal control subjects group.	127
14	ROC curve analysis showing the diagnostic performance of AFP & DCP for discriminating HCC group from chronic viral hepatitis group	128
15	Multi ROC curve analysis showing the diagnostic performance of AFP, DCP & their combination for discriminating HCC group from chronic viral hepatitis group.	129

List of Tables

Table No.	Title	Page No.
1	Epidemiology of HCC.	6
2	Okuda Staging System.	29
3	CLIP scoring system for HCC.	30
4	Child-Pugh classification.	31
5	TNM Staging System for HCC	32
6	TNM Stage groupings.	32
7	Barcelona staging system for HCC.	33
8	Frequency of Clinical Features of HCC.	35
9	The Different Available Tumor markers for HCC.	41
10	Summary of tumor markers used for HCC.	64
11	Descriptive and comparative statistics between the three studied groups(HCC, chronic viral hepatitis and control groups) regarding different studied parameters using ANOVA test for parametric data &Kruskul Wallis for non parametric data.	122
12	Comparative Statistics between HCC, chronic hepatitis, control groups regarding different studied parameters using student's t test for parametric data and Mann-Whitney (U) test for non- parametric data.	123
13	Statistical comparison between the different Barcelona stages in HCC patients regarding AFP and DCP levels using Kruskal-Wallis test.	124

Table No.	Title	Page No.
14	Statistical comparison between different Barcelona stages in HCC patients regarding AFP and DCP using Mann-Whitney (U) test.	124
15	Correlation analysis between AFP and different studied parameters in HCC & chronic viral hepatitis patients groups using Spearman's rank correlation coefficient.	125
16	Correlation analysis between DCP and different studied parameters in HCC & chronic viral hepatitis patients groups using Spearman's rank correlation coefficient.	125
17	The diagnostic performance of AFP and DCP for discrimating chronic viral hepatitis group from normal control subjects group.	127
18	The diagnostic performance of AFP and DCP for discrimating HCC group from chronic viral hepatitis group.	128
19	The diagnostic performance of AFP, DCP & their combination for discriminating HCC group from chronic viral hepatitis group.	129

I would like to dedicate this Thesis to my **Father** and my **Mother**; to them I will never find adequate words to express my gratitude.

Also to my **Husband** for dealing tactfully and patiently during this work

سورة البقرة الآية: ٣٢

Introduction

Hepatocellular carcinoma (HCC) is a major health problem worldwide. It is the fifth most common cancer and the third leading cause of cancer-related death (*Lau and Lai*, 2008).

Patients with hepatitis B and C related liver cirrhosis are at high risk of developing HCC. The prognosis of patients with HCC is poor when diagnosed at an advanced stage but when diagnosed and treated at an early stage, the 5-year survival rate may reach up to 70-80 %. Therefore early detection of HCC is a critical goal to improve the patient outcome (*Sonia et al.*, 2008).

Histo-pathological examination of tumor biopsy is considered the golden standard for diagnosis of HCC. However, it is considered an invasive technique with high risk of seeding the tumor along the biopsy tract (*Change et al.*, 2008).

As regards serologic screening, alpha fetoprotein (AFP) still represents the currently used test for HCC even though its sensitivity of 39 to 65% is not very satisfactory and there is a high rate of false negative and false positive results (*Wei et al., 2006 and Shariff et al., 2009*). Hence, there is an urgent need for more reliable noninvasive recent biomarkers with better sensitivity and specificity for early diagnosis of HCC.