Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (Assiut) – sector (A)

THESIS

Submitted for partial fulfillment of Master Degree in Nephrology

By

OSAMA AHMED RASHID AHMED

M.B.B.CH. – ASSIUT University

Master degree (int medicine) - ASSIUT University

Under Supervision of

Prof. Dr. Magdy Mohamed Saed Alsharkawy Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Waleed Ahmed Bichari
Assistant Professor of Internal Medicine and Nephrology
Faculty of Medicine – Ain Shams University

Dr.Sherry Reda Kamel
Lecturer of Internal Medicine and Nephrology
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2015

Thank to **ALLAH**, Almighty.

Praise be to **ALLAH**, the Merciful, the compassionate for all the countless gifts and support I have blessed with. Of these gifts, those persons who were assigned to supervise my work and guide me to bring successfully this thesis.

I would like to express my deepest gratitude and sincere indebtedness to **Prof. Dr. Magdy Mohamed Saed Alsharkawy**, Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University, for choicing the research topic, his great encouragement, continuous help and giving me unlimited time and effort for very close supervision throughout this work. It is a great honors to work under his supervision.

I would like to express my deepest appreciation and sincerity to **Dr. Waleed Ahmed Bichari** Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University, for her continuous help, support and concern in supervising every part of this work.

I would like to express my deepest appreciation and sincerity to **Dr.Sherry Reda Kamel** Lecturer of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University, for her considerable support, supervision and help during this work.

Osama Ahmed Rashied

2015

Contents

Subject	Page
List of abbreviations	II
List of tables	VII
List of figures	IX
Introduction	1
Aim of the work	4
Review of literature	
Chapter (1): End Stage renal Disease and its	_
managment	5
Chapter (2): Hemodialysis	36
Chapter (3): Current dialysis guidelines and	57
quality assurance	37
Patients and methods	74
Results	79
Discussion	109
Summary , Conclusion& Recommendations	128
References	134
Arabic summary	=

List of Abbreviations

2M	2 microglobulin
ACE	Angiotensin-converting enzyme
ADME	Asymmetric dimethylarginine
ADPKD	Autosomal Dominant Polycystic Kidney Disease
AR	Access recirculation
ARB	Angiotensin receptor blocker
ARF	Acute renal failure
AV	Arteriovenous
AVF	arteriovenous fistulae
AVG	Arteriovenous graft
AV PTFE	Arterio-venous Expanded
	polytetrafluoroethylene
ВМІ	Body mass index
BSA	Body surface area
BUN	Blood urea nitrogen
BW	Body weight
CO/C	Predialysis to postdialysis concentration ratio
CAPD	Continuous ambulatory peritoneal dialysis
CAPR	Cardiopulmonary recirculation
CAV	Average concentration

CAVH	Continuous arteriovenous hemofiltration
CDC	The center of disease control
CFU	Colony-forming unit
CLD	Chronic liver disease
CKD	Chronic Kidney Diseases
COPD	Chronic obstructive lung disease
COX-2	Cyclooxygenase-2
CPMs	Clinical Performance Measures
CPR	Clinical Practice Recommendation
CVD	Cardiovascular disease
cvs	Cardiovascular system
CVVHD	Continuous veno-venous hemodialysis
DM:	Diabetes Mellitus,
DOPPS	Dialysis Outcomes and Practice Patterns Study
DOQI	Dialysis Outcomes Quality Initiative
ECF	Extracellular fluid
ECV	Extracellular volume
Egfr	Estimated glomerular filtration rate
Ekr	Equivalent renal clearance
eKT/V	Urea-equilibrated Kt/V
ESA	Erythropoietin stimulating agent

ESRD	End stage renal disease
ESRF	End stage renal failure
G Urea	Generation rate
GFR	Glomerular filtration rate
HbALE	Hemoglobin A1c
HBsAg	Hepatitis B surface antigen
HBV	hepatitis B virus
HCV	hepatitis C virus
HD	Hemodialysis
HDF	Hemodiafiltration
HIV	human immunodeficiency virus
HMG	3-Hydroxy-3-methylglutaryl
HR	Hazard ratio
HRQPL	Health-related quality of life
HTN	Hypertension,
IDEAL	Initiating Dialysis Early And Late
K/DOQ 1	The National Kidney Foundation Kidney Disease
	Outcome Quality Initiative
КОА	Dialyzer mass transfer area coefficient
Kee	Continuous equivalent clearance
KD	Dialyzer clearance
KDOQI	Kidney Disease Outcomes Quality Initiative

Keen	Dialyzer clearance estimated by conductivity
KLS	Kidney Learning System
Kr	Residual native kidney urea clearance
KRT	Kidney replacement therapy
Kt/V	Clearance expressed as a fraction of urea or body
	water volume
KT/VUREA	Urea clearance expressed as Kt/V
KUF	Ultrafiltration coefficient
KUREA	Effective (delivered) dialyzer urea clearance
LVH	Left ventricular hypertrophy
MDRD	Modification of Diet in Renal Disease
МОН	Ministry of Health
Nekr	Equivalent renal clearance normalized to body size
NHANES	The National Health and Nutrition Survey
NIVM	Noninvasive monitoring
NKF	National Kidney Foundation
nPCR	Normalized protein catabolic rate
nPNA	Normalized protein nitrogen appearance rate
NS	Not significant
OR	Odds ratio
PD	Peritoneal dialysis
QA	Quality assurance

QOL	Quality of life
RC	Remote compartment
RKF	Residual kidney function
Rkt/v	Residual Kt/V
RRT	Renal replacement therapy
SHPT	Secondary hyperparathyroidism
SLE	Systemic Lupus Erythematosus.
SpKT/V	Single-pool delivered Kt/V (by dialysis only,
	exclusive of RKF)
SRI	Solute removal index
STDKT/V	Standard Kt/V
TAC	Time-averaged concentration
TCV	Total cell volume
Td	Time from beginning to end of dialysis
Tmp	Transmembrane pressure
UF	Ultrafiltration
UFR	Ultrafiltration rate
URR	Urea reduction ratio
USRDS	Unites states renal data system
Vurea	Patient's volume of urea distribution
WHO	The World Health organization

List of Tables

No	Title	Page
1	UK Registry definition of end-stage renal disease	6
2	Main causes of ESRD	9
3	Recommended dietary intake for chronic kidney and end-	30
	stage renal disease patients	
4	The mean duration before need for RRT	32
5	Key Components of the HD Prescription	38
6	Quality measures in ESRD	67
7	QA components: domains suggested where monitoring	69
	quality measures may be of most importance	
8	CPMs used to assess quality in a large dialysis service	70
	provider network	
9	Hemodialysis Centers in Assiut city	82
10	the hemodialysis center data of the studied "patients,	83
	Machines, nursing staff, and doctors" in Assiut city	
11	The Age of the study population	84
12	Gender 0f the study population	85
13	Etiology of ESRD in the study population	86
14	Comorbidities in the study population	87
15	Dialysis Complications in the study population	89
16	Frequency of hemodialysis sessions/week in the study	90
	population	
17	Dialysis duration in the study population (years)	91
18	Duration of HD session in the study population	91
19	Dependency and chair bound	92
20	work status in the study population	93
21	Sponsoring Status in the study population	94

	List of Tables (cont.)	
22	Type of vascular access in the study population	95
23	the percentage of failed hemodialysis access in the study	96
	population	
24	the number of hemodialysis access failures in the study	96
	population	
25	The levels of Hemoglobin during the last 6 months covered by the study	97
26	Hemoglobin category in the study population	98
27	the treatment options for anemia in the study population	99
28	the dose of ESA used in the study population	100
29	The levels of Calcium during the last 6 months	100
	covered by the study	
30	Hepatitis-C virus status of the study population	101
31	Isolation of HCV Ab positive cases in the study population	102
32	HBV status in the study population	103
33	The dialyzer models used in the study population	104
34	Dialyzer material used in the study population	105
35	Dialyzer surface area used in the study population	106
36	Dialysate type used in the study population	107
37	Dialysate bath used for patients	108
38	Anticoagulation type used in the study population	109
39	Anticoagulation dose used in the study population	109

List of Figures

No	Title	Page
1	Holistic approach to CKD based on the integration of hospital care and home care	16
2	OPTIMA treatment algorithm for "Early use of calcimimetics and reduced-dose vitamin D sterols"	23
3	Extracorporeal circuit	40
4	Typical concentrations of electrolytes in dialysis fluid	42
5	Dialysis fluid pathway in hemodialysis	44
6	Dialysis fluid pathway in post dilution hemodiafiltration	46
7	Consistent improvement of dialysis adequacy in a dialysis network which implemented a formal collection, analysis, and reporting of CPMs, including Kt/V	71
8	Hemodialysis Centers in Assiut city	82
9	HD center data of the studied "patients, Machines, nursing staff, and doctors" in Assiut city	84
10	The Age of study population	85
11	Gender 0f the study population	86
12	Etiology of ESRD in the study population	87
13	Comorbidities percentage in the study population	88
14	Percentage of Dialysis Complications in the study population	89
15	Frequency of HD sessions/week in the study population	90
16	Duration of hemodialysis session in the study population	91
17	Dependency and chair bound	92

	List of Figures (cont.)	
18	Work status in the study population	93
19	Sponsoring Status in the study population	94
20	The type of hemodialysis vascular access in the study population	95
21	The number of vascular access failure in the study population	97
22	Hemoglobin category in in the study population	98
23	the treatment options for anemia in the study population	99
24	Hepatitis-C virus status of the study population	101
25	Isolation of HCV positive cases in the study population	102
26	HBV status in the study population	103
27	The dialyzer models used in the study population	105
28	Dialyzer material used in the study population	106
29	Dialyzer surface area used in the study population	107
30	Dialysate type used in the study population	108
31	Anticoagulation dose used in the study population	109

INTRODUCTION

S tudies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%–40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful.1 However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (Locatelli et al.,2004).

In recent years, specific clinical guidelines have been developed to optimize the quality of anemia management secondary to chronic kidney diseases(CKD). As a result, the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K\DOQ I) guidelines and the Renal-European Dialysis and Transplantation Association best practice guidelines have been published in USA & Europe. Therefore; clinical practice guidance help individual physician and physicians as group to improve their clinical performance and thus raise standard of patient care towards optimum levels, They may also help to insure that all institution provide an equally good base line standard of care (*Cameron*, 1999).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (*Locatelli et al.*, 2004).

Dialysis Outcomes and Practice Patterns Study (DOPPS) has observed a large variation in anemia management among different countries. The main hemoglobin concentration in hemodialysis patient varied widely across the studied countries ranging between 8g/dl to 11g/dl. The percentage of prevalent hemodialysis patient receiving erythropoietin stimulating agent 'ESA' has increased from 75% to 83%. The percentage of HD patient receiving iron varies greatly among DOPPS countries range from 38% to 89%, (*Locatelli et al.*, 2004).

There are challenges in implanting clinical guidelines in medical practice. Overall DOPPS data which show that, despite the availability of practice guidelines for treatment of renal anemia, wider variation in anemia management exists as gap between what is recommended by the guidelines and is accomplished in every day clinical practice. Compliance with clinical guidelines is an importance indicator of quality and efficacy of patient care at the same time their adaptation in clinical practice may be initiated by numerous factors

including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (*Cameron*, 1999).