Three Dimensional Correction of Adolescent Idiopathic Scoliosis

A Thesis

Submitted for fulfilment of

M.D. degree in Neurosurgery

By

Mohamed Ali Elsaid Elgaidi

M.B., B.Ch. M.Sc. general surgery

Supervised by

Prof. Dr.Mostafa M.W. Kotb

Professor of Neurosurgery

Faculty of Medicine

Cairo University

Prof. Dr. Helmi Abdelhalim ElDesoki

Professor of Neurosurgery

Faculty of Medicine

Cairo University

Prof. Dr. Mohamed mohi-Eldin

Professor of Neurosurgery

Faculty of Medicine

Cairo University

Assistant Prof. Dr. Yasser ElMiligui

Assistant Prof. of Orthopaedic Surgery

Faculty of Medicine

Cairo University

2009

Faculty of Medicine

Cairo University

بينير المواليجيز الحينيم

العلي المحانب المحير العمير العمير

البقرة ايه ۳۲

Acknowledgment

Above all my deep thanks are to Allah, The Great, for everything and for giving me health and strength to finish this work.

I would like to express my utmost respect and appreciation to **Prof. Dr. Ahmed Issa**, Professor of Neurosurgery and head of neurosurgery department Cairo University. It is a pleasure to work under his fair, kind and scientific personality.

I am greatly honoured to express my deepest gratitude and respect to **Prof. Dr. Mostafa M. Wagih Koth**, , Professor of Neurosurgery, his stimulating supervision , continuous advice, fatherly attitude and reassuring were the motives for this work.

I am greatly honoured to express my deepest gratitude and respect to **Prof. Dr. Helmi Abdelhalim ElDesoki**, Professor of Neurosurgery, for his valuable supervision, guidance and encouragement.

I am deeply indebted to **prof. Dr. Mohamed mohi-eldin** Professor of Neurosurgery, for his generous help, constructive criticism and wise counselling and support through this work.

No words can describe my deep gratitude to **prof. Dr. Yasser ElMiligui**, Assistant Prof. of Orthopaedic Surgery. He supervised closely its progress with great interest. Without his continuous guidance and unlimited help, this work wouldn't come to light.

Special appreciation is indebted to my professors, lecturers and colleagues especially **Dr. ElMoataz Salah Eldin and prof. Dr. Wael Kaptan and prof. Dr. Ihab Emran** in the orthopaedic department, Cairo University.

Mohamed Ali

This work is dedicated to

My Parents

My wife, Sara and Ali

My brothers and sister

Abstract

Adolescent idiopathic scoliosis is a three dimensional deformity of the spine with lateral curvature measuring more than 10° with vertebral rotation and frequently associated with hypokyphosis. It arises in otherwise healthy children at or around puberty. Posterior instrumentation and fusion using hybrid technique (transpedicular screws distally at the lumbar or lower thoracic spine and hooks proximally) was used for correction of scoliosis in three planes by ISOLA spinal instrumentation system.

Key words:

Adolescent idiopathic scoliosis, Posterior instrumentation and fusion, hybrid technique, ISOLA.

Aim of this work:

- Review the literature about: Scoliosis terms, spinal anatomy, biomechanics, and theories of the aetiology, pathology, natural history, clinical, radiological features of idiopathic scoliosis with emphasis on decision making in scoliosis treatment and highlighting contemporary 3rd generation of scoliosis instrumentations as well as methods of intraoperative spinal cord monitoring.
- To perform a prospective study upon forty patients with adolescent idiopathic scoliosis using a spinal system providing three-dimensional correction namely the ISOLA system.
- Analysis of the results and the efficacy of this method of treatment in correction of scoliosis in three planes with average one year follow up.
- To assess the complications of this method of treatment.
- To discuss the results obtained in this study comparing it to results of other studies using relevant methods.

List of Abbreviations:

3-D	3-Dimension
AIS	Adolescent idiopathic scoliosis
AP	Anteroposterior
ATI	Angle of trunk inclination
AVR	Apical Vertebral Rotation
AVT	Apical vertebral Translation
С	Cervical vertebra
CD	Cotrel – Dubousset
CSL = CSVL	Central sacral line = center sacral vertical line
CT	Computed tomography
CTLSO	Cervico-Thoraco-Lumbo-Sacral Orthosis
EMG	Electromyography
Fig	Figure
IAR	Instantaneous Axis of Rotation
L	Lumbar vertebra
Lat	Lateral
LIV	Lower Instrumented Vertebra
Lt	Left
M.R.I	Magnetic Resonance Imaging
MEP	Motor evoked potential
N	number
NMEP	Neurogenic motor evoked potential
PA	Posteroanterior
PHV	peak height velocity

PIF	posterior instrumentation and fusion
Postop	Postoperative
Preop	Preoperative
Rt	Right
S	Sacral vertebra
SRS	Scoliosis research Society
SSEP	Somatosensory evoked potential
T	Thoracic vertebra
TL	ThoracoLumbar
TLSO	Thoraco-Lumbo-Sacral Orthosis
TSRH	Texas Scottish Rite Hospital
UIV	Upper Instrumented Vertebra
VATS	Video assisted thoracoscopic surgery
VSP	Variable Screw Placement

List of figures:

Figure	The title	Page n.
Fig.1-1	Angle of trunk inclination	9
Fig.1-2	Rt thoracic major curve and minor lumbar curve	9
Fig.1-3	Central sacral line	10
Fig.1-4	Anatomical classification of scoliosis	10
Fig. 1-5	pelvic obliquity and inclination	11
Fig. 1-6	Vertebral apical translation	11
Fig.1-7	PA radiograph demonstrating the important vertebrae and	12
	landmarks	
Fig.1-8	Risser grade.	12
Fig. 1-9	The Cobb method	13
Fig.2-1	Possible pathogenesis of idiopathic scoliosis.	17
Fig.3-1	The normal curvatures of the vertebral column	22
Fig. 3-2	The C7 sagittal plumb line	22
Fig.3-3	Mean sagittal plane angulations of the normal thoracic	23
	and lumbar curves using a local coordinate system.	
Fig.4-1	The patho-anatomical changes that occur in an apical	26
	thoracic vertebra in a Rt thoracic scoliosis.	
Fig.4-2	Illustration of a horizontal section of a Rt thoracic	28
	scoliosis in prone position seen from caudal side.	
Fig. 4-3	Axial CT of the thoracic cage in a patient with RT thoracic	30
	scoliosis	
Fig.4-4	A: Coronal and B: Axial MRI T2 of a patient with Rt	32
	thoracic curve showing the position of the aorta and	
	spinal cord.	
Fig.4-5	AP view of the vertebral column of a patient with scoliosis	33
Fig.4-6	The same specimen is seen from behind	34
Fig.5-1	Local, regional, spinal and global axis systems.	40
Fig.5-2	Bending moment	40
Fig. 5-3	3 and 4 point bending moment	41
Fig.5- 4	Rotation and translation motion.	41
Fig.5-5	The six degrees of freedom of a motion segment	42
Fig.5-6	Stress and strain	42
Fig.5-7	Stress-strain graph of a typical material	43
Fig. 5-8	Simple static analysis of lifting mechanics to determine forces at the thoracolumbar junction	43

Fig. 5-9	The concept of three-dimensional spinal asymmetry in the pathogenesis of idiopathic scollosis.	45
Fig. 5-10	A graphic presentation of "relative corrective moment" for the three loading types	48
Fig. 5-11	B: The spinal derotetion technique. C: the spinal translation technique.	51
Fig. 5-12	Axial view of the spinel derotation technique	52
Flg. 5-13	Differential rod contouring	52
Flg. 7-1	Nomogram for prediction of progression of scoliotic curve	.60
Fig. 7-2	The relationship between PHV and other indicators of maturity.	61
Fig. 8-1	Various signs in A.I.S	6B
Fig. 8-2	Different commonly used views for scoliosis assessment	70
Flg. 8-3	Diagrem of Stagnara derotetion view.	71
Flg. 8-4	Methods for determining vertebral rotation): A-Nash and Moe method B-The Perdriolle torsion meter	73
Fig. 8-\$	Construction of rib-vertebral angle difference (RVAD)	73
Fig. 9-1	Rules and definitions for determining the lumbar spine modifiers	83
Fig. 9-2	The types of lumbar spine modifiers.	84
Fig. 10-1	Different brace styles.	92
Flg. 10-2	Crankshaft phenomenon	9 9
Flg. 10-3	schematic drawing of height velocity and relation to crankshaft phenomena	100
Ftg.10-4	Thoracoscopic anterior instrumentation	103
Fig. 10-6	intraoperative photo of Rt. thoracotomy for anterior instrumentation and fusion (single rod technique)	103
Fig.1:	Assessment of maturity (Tanner staging)	115
Fig.2:	Steps of posterolateral thoracotomy and anterior release and fusion.	122-125
Fig. 3:	Rt thoraco-abdominal approach	127-126
Fig. 4:	Exposure for posterior instrumentation and fusion in A.I.S.	132
Flg.5:	Steps of transpedicular screw placement.	134
Fig. 5:	The lumber trans-pedicle screw	135-136
Flg.7:	The thoracio trens-pedicular screw	137-135
Fig. 8;	Transverse hook placement.	139

Fig.10:	The open sublaminar hook	141
Fig.11:	Passing the sublaminar wires.	143
Fig. 12:	Placement of the concave rod (Lt rod) (Patient with Rt thoracic curve	144-145
Fig.13:	Concave rod derotation technique	147
Fig.14:	Placement of the convex rod and tightening the sublaminar wires	148
Fig.15:	The final view after cutting the machine threaded parts of the screws and the sublaminar wires	148
Fig.16:	Correction of double major curve pattern (RT thoracic, LT lumbar)	150-151
Fig.17:	The steps of thoracoplasty	153-154
Fig.18:	Sex distribution	177
Fig.19:	Age groups distribution	177
Fig.20:	The tanner stages distribution	178
Fig.21:	The distribution of rotational prominence	179
Fig.22:	The distribution of shoulder level preoperatively	179
Fig. 23:	Curve patterns according to King classification	180
Fig. 24:	Curve patterns according to Lenke classification	181
Fig. 25:	The distribution of sagittal modifier	182
Fig. 26:	The surgical approaches	183
Fig. 27:	The UIV distribution	185
Fig. 28:	The LIV distribution	185
Fig.29:	The distribution of patient satisfaction postoperatively	188
Fig.30:	Patient with pulled out claw	190
Fig.31:	Patient with postoperative coronal imbalance	190
Fig.32:	Patient with crankshaft phenomena	191
Fig.33:	Case report 1	198-199
Fig.34:	Case report 2	201-203
Fig.35:	Case report 3	205-206
Fig.36:	Case report 4	208-209
Fig.37:	Case report 5	201-212

List of tables:

Table N.	The title	Page N.
Table 1	SRS glossary of scoliosis terminology	4-8
Table 2	SRS Glossary of Scoliosis Biomechanical Terms	34-38
Table 3	Anatomical classification of scoliosis	57
Table 4	The prevalence of AIS according to different Cobb angles	58
Table 5	Curve progression factors after skeletal maturity	62
Table 6	Indications of MRI in 'atypical 'AIS	75
Table 7	King Classification of thoracic Curve Patterns	79
Table 8	Lenke classification system of AIS	85
Table 9	Schematic drawings of the curve types, potential lumbar and sagittal modifiers.	86
Table 10	Summary of treatment algorithm in A.I.S	95
Table 11	Master table of results	175-176

List of contents:

	The title	Page n.
	Part I: Review of literature	
	Introduction	1-3
Chapter 1	SRS Glossary of Scoliosis Terminology	4-16
Chapter 2	Theories of Aetiology of Idiopathic Scoliosis	15-17
Chapter 3	Anatomy of the Spinal Alignment	18-23
Chapter 4	Pathological Anatomy of Scoliosis	24-34
Chapter 5	Biomechanics of scoliosis	35-53
Chapter 6	Classification of scoliosis	54-57
Chapter 7	Natural History of Adolescent Idiopathic Scoliosis	58-64
Chapter 8	Patient Evaluation	65-76
Chapter 9	Classification of A.I.S according to Curve Patterns and selection of fusion levels	77-88
Chapter 10	Treatment of Adolescent Idiopathic Scoliosis	89-108
Chapter 11	Intraoperative monitoring of neurological function during scoliosis surgery	109-112
	Part II: Materials and Methodology	113-174
	The preoperative evaluation sheet	113-117
	2. Preoperative planning	118-119
	3. The surgical techniques	120-156
	4. ISOLA Spinal System description	157-170
	5. Postoperative management	171-174
	Part III: The results	175-191
	Part IV: Discussion	192-196
	Part V: Case Presentations	197-212
	Part VI: Conclusion and recommendations	213
	Part VII: Summary	214
	Part VIII: References	215-223
	Arabic Summary	

Introduction:

Scoliosis is derived from the Greek word 'skoliosis', which means curvature. According to Scoliosis Research Society it signifies coronal plane deformity (lateral curvature) of the spine measuring more than 10° with rotation of the vertebrae within the curve.

(Qiu et al, 2005)

Scoliosis should be conceptualized as a three dimensional deformity though; twisting of the spine is coupled with curvature producing deformity in both coronal and sagittal planes.

(Perdriolle et al, 2001)

Scoliosis is actually relatively common compared to other musculoskeletal diseases, affecting approximately 2%-3% of the population. It is a morbid process resulting from a wide variety of pathological conditions. In the great majority of patients the cause and the underling mechanism remain obscure (idiopathic scoliosis). Adolescent idiopathic scoliosis is by far the most common type of scoliosis. And as its name implies, adolescent idiopathic scoliosis occurs between the ages of 10 and skeletal maturity. (Albanese, 2002)

The treatment of patients with adolescent idiopathic scoliosis (AIS) begins with an estimation of curve magnitude and an estimation of the probability for curve progression. The major determinant of curve progression is the patient's age (both chronological and bone development). Secondary determinants include sex of the patient and rotation of the spine. Once these determinants are assessed, the treating physician can formulate a treatment strategy. (Newton and Wenger, 2006)

Although some doubt the effectiveness of brace treatment, the two most widely accepted nonoperative techniques for (AIS) are observation and bracing. Scoliosis braces of many different styles have been developed, the common goal being to modify spinal growth by applying an external force. (Castro, 2003)

The goals of surgery for spinal deformity are to correct or improve the deformity while maintaining coronal, sagittal balance and shoulders leveling, improving or at least not harming the function of the lumbar spine, preserving or improving pulmonary function and minimizing morbidity. Cessation of curve progression is achieved with bony fusion between the affected vertebrae while the correction is held and supported by spinal instrumentation until healing is complete. This should be achieved with fusion as few segments as possible. (Freeman, 2003)

The posterior approach to the spinal column is the most commonly used. It is familiar to all spinal surgeons and offers a safe and extensile approach that exposes the entire vertebral column and universally applicable to all curve patterns. (Newton and Wenger, 2006)

Spinal instrumentation has revolutionized the surgical treatment of (AIS). The true breakthrough in surgical management of scoliosis came in early 1950s when Harrington introduced the first effective posterior instrumentation system for scoliosis. (Harrington, 1962)

For more than 30 years, use of the Harrington distraction rod has been the standard surgical treatment for idiopathic scoliosis. Despite its success, the Harrington instrumentation system has several disadvantages. The average coronal curve correction in idiopathic scoliosis is approximately 30%, 15% at two years and twenty years respectively. With the Harrington distraction rods the distraction force is applied only at the two laminae where the hooks are seated. If a load exceeds the strength of the lamina, fracture and loss of correction can result so there is a need for postoperative casting. Distraction inevitably leads to poor control of the sagittal plane and loss of some degree of lumbar lordosis. (Helenius et al, 2003)

In the early 1970s Luque introduced the 2nd generation of scoliosis instrumentation, which included sublaminar wires attaching Harrington rods to the spine to improve its stability and more correction of the rotational deformity. (Luque, 1982)