RESPONSE OF EGG PRODUCTION AND EGG SHELL QUALITY TO DIETARY VEGETABLE OILS

By

MAHAMADOU ISSOUFOU HASSANE

B.Sc. Agric. Sci. (Animal Prod.), Fac. Agric. (Cairo), Al-Azhar Univ., 2005

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences

(Poultry Nutrition)

Department of Animal Production Faculty of Agriculture Cairo University EGYPT

2009

APPROVAL SHEET

RESPONSE OF EGG PRODUCTION AND EGG SHELL QUALITY TO DIETARY VEGETABLE OILS

M.Sc. Thesis
In
Agric. Sci. (Animal Production)

By

MAHAMADOU ISSOUFOU HASSANE

B.Sc. Agric. Sci. (Animal Prod.), Fac. Agric. (Cairo), Al-Azhar Univ., 2005

Approval Committee

Dr. MOHAMED AMIN MOHAMED HASSANIN Researcher Professor of Poultry Nutrition, National Research Center
Dr. MOHAMED REDA MOHAMED IBRAHIM Professor of Poultry Nutrition, Fac. Agric., Cairo University
Dr. OSAMA MOHAMED El-HUSSEINY Professor of Poultry Nutrition, Fac. of Agric., Cairo University
Dr. MAMDOUH OMAR ABD EL- SAMEE

Date: / /2009

SUPERVISION SHEET

RESPONSE OF EGG PRODUCTION AND EGG SHELL QUALITY TO DIETARY VEGETABLE OILS

M.Sc. Thesis
In
Agric. Sci. (Animal Production)

 $\mathbf{B}\mathbf{y}$

MAHAMADOU ISSOUFOU HASSANE

B.Sc. Agric. Sci. (Animal Prod.), Fac. Agric. (Cairo), Al-Azhar Univ., 2005

SUPERVISION COMMITTEE

Dr. OSAMA MOHAMED El-HUSSEINY Professor of Poultry Nutrition, Fac. Agric., Cairo University

Dr. MAMDOUH OMAR ABD EL- SAMEE Professor of Poultry Nutrition, Fac. Agric., Cairo University Name of Candidate: Mahamadou Issoufou Hassane Degree: M .Sc.

Title of Thesis: Response of Egg Production and Egg Shell Quality to

Dietary Vegetable Oils

Supervisors: Dr. Osama Mohamed El-Husseiny

Dr. Mamdouh Omar Abd-El Samee

Department: Animal Production

Branch: Poultry Nutrition

Approval: / /

ABSTRACT

An experiment was conducted to examine the effect of dietary linseed oil, palm oil and sunflower oil levels and their interactions on laying hen performance, egg quality and economic efficiency. The oils were used to substitute 2.4 % or 4.8 % of the diet. the diets were fed to 810 Bovans White laying hens, 30 weeks of age for 16 wks, which were, divided randomly into 15 groups of 54 hens in 3 replicates of 18 hens each. T1 was consider as control group (Cont.). Experimental groups were offered diets having 2.4 % or 4.8 % of either linseed oil (LO) or palm oil (PO) or sunflower oil (SFO). (1:1) mixture of LO + PO, LO + SFO or PO + SFO, respectively. And (1:1:1) mixture of LO + PO + SFO. Body weight, Egg production, egg weight, feed intake, egg internal and external quality characteristics were recorded. It can be concluded that the vegetable oil had positive effect on hen performance. Feeding laying hens on PO + SFO diet at 2.4 % substitution produced the best egg production. Egg weight tends to increase with oil addition. The diets containing PO at 4.8 % or PO + SFO at 2.4 or 4.8 % substitution, recorded the best feed conversion ratio. No significant differences between dietary oil sources or levels on egg shell thickness and percentage, total lipid or total cholesterol contents in the yolk and albumen mixture compared to the control diet. All oil sources improved egg shell weight when compared to control diet. Significant differences omong dietary treatments on serum total immunoglobulin titres were observed. The diet containing PO + SFO at 2.4 % substitution level had the highest relative economic efficiency compared to the control diet. Vegetable oil improved the digestion coefficient values of almost all of the nutrients. Addition of 4.8% vegetable oil resulted in a significant (P < 0.05) increase in egg yolk SFA with a concomitant reduction in egg yolk MUFA. Oleic acid ($C_{18:1}$) was the dominant fatty acid in all groups, followed by palmitic ($C_{16:0}$) and LA ($C_{18:2}$). A rise in LO in the diet resulted in an increase in LNA ($C_{18:3}$)concentration in the yolk lipids.

Key words: Laying hens, egg production, egg quality, vegetable oils.

Acknowledgement

I would like to thank, first and foremost my advisor, Dr.Osama Mohamed El-Husseiny, Professor of Poultry Nutrition, Animal Production Department, Faculty of Agriculture, Cairo University for taking me under his wing. his time, effort, expertise, patience, and understanding have made the difference to me. Thank you for all the extra opportunities you have supplied to allow me to get "hands on" experience.

I would also like to thank **Dr. Mamdouh Omar Abd-Elsamee**, Professor of Poultry Nutrition, Animal Production Department, Faculty of Agriculture, Cairo University for helping throughout my graduate career. he always have been there to answer any questions that I may have had, but left me to my own devices to get things done and form my opinions.

To **Dr. Islam Ibrahim Omara**, lecturer of Poultry Nutrition, Animal Production Department, Faculty of Agriculture, Cairo University. words can't express my gratitude! Thank him for always helping and assisting me throughout my study, and sharing his expertise whether on the farm or in the lab. I want to thank him for pushing me when I need pushing, letting me make my own mistakes, and helping me back up if I fell or felt like I couldn't finish the task at hand.

Special gratitude is extended to the staff members and technicians of the same department for their support, patience and innumerable hours of assistance in the lab and many other little things that need to be done. Thank them for their continuous encouragement to press on, and to not give up.

Sincere acknowledgement is also expressed to the farm personnel at the Poultry Research Center for providing a warm, friendly, and comfortable environment for me to enjoy working there.

INTRODUCTION

In most developing countries such as Egypt, there is a big gap between available and required amounts of the grains for poultry feed, the main reason of this gap is the extensive poultry production especially egg production due to the extensive increase in human population and increasing their demands of animal products such as meat and egg. The considerable increase in the cost of poultry diets in Egypt has necessitated a search for cheaper sources of dietary energy to particully replace the cereals traditionally used in poultry diets. Lipids (fats and oils) are one of these sources which can be used in poultry diets. Besides, fats can serve as a source of the fat soluble vitamins, A, K, E and D in addition to the polyunsaturated fatty acid such as linoleic acid which cannot be synthesized by the animal and therefore, very necessary proper functioning of many metabolic processes. Although, the effect of feeding unsaturated fats on laying hen has been studied by several workers, only little has compared saturated vs. unsaturated fats and fatty acids and their utilization by laying hens.

Fat is considered to be a practical and economical means to increase energy levels in poultry diets. The incorporation of animal fat and vegetable oil sources in balanced levels to laying hen diets has often influenced feed intake and conversion, egg quality and quantity and other egg production parameters. Whether it is practical or not, adding fat to the poultry diets depends upon the relative prices of the grains and of the available oils. The addition of fat to diets, besides supplying energy, improves the absorption of fat-soluble vitamins, increases the palatability of the rations, and increases the efficiency of

that chickens fed rations containing oil showed better performance than birds fed diets without oil inclusion. Egg production improved by adding vegetable oil to laying hen diet (Augustyn *et al.*, 2006 and Celebi and Utlu, 2006). García-Rebollar *et al.* (2008) found no effect of linseed oil or marine fish oil on shell thickness. Suksombat *et al.* (2006) found that Shell thickness was not influenced by the dietary conjugated linoleic acid. Millet *et al.* (2006) observed that dietary fat source did not influence cholesterol content in the yolk or in the total egg.

The experiment was designed to evaluate the effect of some energy sources from vegetable origins, at two substitution levels 2.4% or 4.8% and their mixtures from the diet on laying hen performance, egg quality, immune response, nutrients utilization, economic efficiency of egg production and egg yolk fatty acid.

The present work aimed to study the effect of some vegetable oil, at two substitution levels (2.4% or 4.8%) of the diet, on egg production, especially from the economic point of view and the egg quality of egg produced with emphasizing on their contents of total lipids and total cholesterol.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Fatty acid classification	
a. Saturated fatty acids	
b. Unsaturated fatty acids	
1. Monounsaturated fatty acids	
2. Polyunsaturated fatty acids	
2. Biosynthesis of fatty acids	
a. Elongation and desaturation	
3. Effect of dietary oil and fat on laying hens performance	
a. Body weight	
b. Egg production	
c. Egg weight	
d. Feed intake	
e. Feed conversion ratio	
f. Energy intake	
g. Egg mass	
h. Egg size	
4. Effect of dietary oil and fat on egg quality	
a. Shell thickness	
b. Egg shell percentage	
c. Haugh unit	
d. Albumen Index	
e. Shape index	
5. Effect of dietary oil and fat on egg yolk cholesterol	
6. Effect of dietary oil and fat on fatty acid composition of	
egg yolk	
MATERIALS AND METHODS	
1. Experimental birds and management	
2. Experimental diets	
3. Experimental design	
4. Measurements and methods of interpreting results	
a. performance	
1. Egg production	
2. Egg weight	
3. feed intake	
4. Feed consumption	
5. Average live body weight gain	
6. Digestion trials	
b. Egg quality	
1. External egg quality	

a. Shape index	45
b. Egg shell weight	46
c. Egg shell percentage	46
d. Egg shell thickness	46
2. Internal egg quality	46
a. Yolk and albumen weight	46
b. Albumen index	46
c. Yolk index	46
d. Haugh units	46
5. Analytical methods	47
a. Determination of egg total lipids	47
1. Preparation of the solutions	47
a. Chloroform-methanol solution	47
b. Methanol-water solution	47
2. Determination method	48
b. Determination of egg yolk total cholesterol	48
1. Preparation of the solutions	48
a. Ferric chloride acetic acid reagent	48
b. Standard cholesterol solutions	48
2. Determination method	49
c. Immunological studies	49
1. Blood sampling	49
2. Determination of serum total immunoglobulin titters	50
a. Solutions	50
b. Measuring Ing and Igm	50
d. Determination of fatty acids on lipid sources and egg	50
1. Extraction of fatty acids	51
a. Lipid extraction	51
b. Separation of fatty acids	51
c. Preparation of diazomethane	51
d. Methylation of fatty acids with diazomethane	52
e. Sources of standard fatty acids	52
f. Identification and determination of fatty acids by gas liquid	5 2
matograph (GLC)	53
g. Separation condition of fatty acids	53
h. Fractionation of unsaponifiables	54
6. Economic efficiency of egg Production	54
7. Statistical analysis	54
RESULTS AND DISCUSSION	56
1. Laying hen performance	56
a. Egg production	56
b. Egg weight	58
c Feed intake	60
d. Feed conversion ratio	63
e. Live body weight gain	65
2. Egg quality	68

a. External egg quality	68
1. Shape index	68
2. Egg shell weight	68
3. Egg shell percentage	71
4. Egg shell thickness	73
b. Internal egg quality	73
1. Albumen index	73
2. Yolk index	76
3. Yolk and albumen weight	78
4. Haugh units	80
3. Blood parameters	80
a. Serum total immunoglobulin titter	80
4. Digestion trials	83
a. Digestion coefficient of the experimental diets	83
5. Physiological traits	87
a. Egg total lipids	87
b. Egg total cholesterol	87
c. Fatty acids content of egg yolk	90
6. Economic efficiency	95
SUMMARY	98
REFERENCES	104
ARABIC SUMMARY	120

LIST OF ABBREVIATIONS

AA Arachidonic acid

AOAC Association of Official Agriculture Chemists

⁰C Celsius degree

CF Crude Fiber

CLA Conjugated linoleic acid

cm Centimeter = 10^{-2} meter

CP Crude protein

DHA Docosahexaenoic acid

DM Dry matter

EE Ether extract

EPA Eicosapentaenoic acid

FFSB Full-fat soybean

Gram = 10^{-3} kilogram

HDL-Chol High density lipoprotein cholesterol

HO-SFM High oil sunflower meal

HO-SFO High oleic sunflower oil

Kcal Kilocalorie = 10^3 calorie

Kg Kilogram = 10^3 gram

LA Linoleic acid

L.E. = 1 Pound Egyptian currency = 100 Piasters

LDL-Chol Low density lipoprotein cholesterol

LNA Linolenic acid

LO Linseed oil

ME Metabolizable energy.

 $mg Milligram = 10^{-3} g$

mm Millimeter = 10^{-3} meter

MUFA Monounsaturated fatty acid

NFE Nitrogen free extract.

NRC National Research Council

NPN Non protein nitrogen

NPP Non phytate phosphorus

OM Organic matter.

PGE2 Prostaglandin E2

PKM Palm kernel meal

PO Palm oil

PUFA Polyunsaturated fatty acid

SFA Saturated fatty acid

SFO Sunflower oil

SSS Soybean soapstock

TMEn Nitrogen corrected true metabolizable energy

ω Omega

WKs 1 Week = 7 days

REVIEW OF LITERATURE

1. Fatty acid classification

Fatty acids are classified according to carbon chain length and degree of saturation (as defined by the number of double bonds in the molecule). Nutritionists also identify which "omega" family an unsaturated fatty acid belongs to, $\omega 3$, $\omega 6$ or $\omega 9$, by the position of the first double bond on the carbon chain counting from the methyl end of the molecule. Fatty acids can be classified as saturated (no double bonds), monounsaturated (one double bond) or polyunsaturated (two or more double bonds). Woods *et al.* (2005)

a. Saturated fatty acids

Saturated fatty acids (SFA) are those that have no double bonds and are considered as the 'bad' fatty acids, in that they increase serum cholesterol in humans (Bruckner, 1992). Stearic acid (C_{18:0}) is a saturated fatty acid that has different biological effects than other saturated fatty acids and is considered to have a neutral effect on cholesterol levels. Its main sources are animal fats, vegetable oils and chocolate (Dietary Guidelines Advisory Committee Report, 2005).

b. Unsaturated fatty acids

Unsaturated fatty acids, with double bonds, are the more 'beneficial' fatty acids in terms of human health, and have many health benefits attributed to them. The main sources of unsaturated fatty acids are vegetable oils although there are also some in animal products, such as meat and dairy products. Unsaturated fatty acids can be further broken down into monounsaturated fatty acids (MUFA) or polyunsaturated (PUFA) as follows (Woods *et al.*, 2005).

1. Monounsaturated fatty acids

Monounsaturated fatty acids contain only one double bond in their chemical composition. Vegetable oils e.g. canola oil, olive oil, high oleic safflower and sunflower oils and nuts are rich in MUFA (Dietary Guidelines Advisory Committee Report, 2005).

2. Polyunsaturated fatty acids

Polyunsaturated fatty acids have two or more double bonds, and may be of two types, based on the position of the first double bond.

2. Biosynthesis of fatty acids

a. Elongation and desaturation

Biosynthesis of long-chain PUFA in mammalian cells occurs through a sequence of alternating desaturation and chain-elongation reactions acting on the dietary fatty acid precursors, linoleic acid 18:2ω6 and linolenic acid 18:3 ω3 (LNA) see Figure 1.1. The same elongation and desaturation pathway involving 24-carbon intermediates and peroxisomal retroconversion is utilized by ω3 and ω6 PUFA. Arachidonic acid 20:4 ω 6 (AA), the major product of the ω 6 series, generates from $18:2\omega6$ by the sequential action of $\Delta6$ -desaturase, an elongase and $\Delta 5$ -desaturase. The same pathway acting on 18:3 ω 3yields EPA (20:5 ω 3) and DHA (22:6 ω 3), the most abundant PUFA of the ω 3 series. The rate limiting step in the enzymatic pathways of PUFA biosynthesis is thought to be $\Delta 6$ -desaturase. The commonly accepted pathway for the synthesis of DHA (22:6 ω 3) consists of the elongation of $20.5\omega 3$ to $22.5\omega 3$ followed by a $\Delta 4$ -desaturation. Whereas, saturated fatty acids (palmitic 16:0 and stearic 18:0 acids) are converted to mono unsaturates (oleic 18:1 acid) by $\Delta 9$ -desaturase (Woods *et al.*, 2005).