Relationship Between Free T4&TSH AND Respiratory Distress Syndrome IN Preterm Infant

Thesis Submitted For The Partial Fulfillment
Of The Master Degree In Pediatrics
BY

Naglaa Sayed Abd Allah M.B.B.Ch Cairo University

Under Supervision OF

Dr. Mervat Al-sayed Haroun

Professor Doctor Pediatric Department Cairo University

Dr.Esmael Mohamed EL Hawary

Assisstant Professor Doctor Pediatric Department Cairo University

Dr .Fatma Fathy AL -Mogy

Professor Doctor
Clinical pathology Department
Cairo University

Faculty of medicine Cairo University 2009

ACKNOWLEDGEMENT

First, grace and foremost thanks to God for blessing this work, as part of his generous help throughout our lives.

I would like to express my sincere gratitude and respect to Prof.Dr.Mervat Alsayed Haroun Prof.of pediatrics, Cairo university, for her continous guidance and supervision, her kind encouragement and support throughout the entire period of the study.

It is my pleasure to express my unlimited appreciation and deepest thanks to Prof.Dr Esmael Mohamed Alhawary, Assistant, Prof.of pediatrics, Cairo university, for his continous supervision and great help.

I would like to express my sincere gratitude and respect to Prof.Dr.Fatma Fathy Almogy Prof.of clinical pathology, Cairo university, for her continous guidance and supervision.

I am deeply grateful to my parents, family, colleagues and friends.

Furthermore I would like to convey my special thanks to my husband,my brothers,my sister and my kids Yasmin and Malack.

Lastly, I would like to thank everyone who helped in completing this work.

To all those I say:

جزاكم الله خيرا

Index

	Page
Acknowledgement	${f A}$
Index	В
Abstract&key words	\mathbf{C}
List of abbreviations	D
List of figures	\mathbf{G}
List of tables	I
Introduction	1
Aim of work	4
Review of literature 1	5
Prematurity	
Review of literature 2	28
Respiratory Distress	
Syndrome	
Review of literature 3	51
Maternal, Fetal and	
Neonatal Thyroid	
Hormones	
Patients and methods	65
Results	70
Discussion	86
Summary	98
Recommendations	99
References	100
Arabic summary	119

Abstract

Respiratory distress syndrome (RDS) is one of the most common respiratory complications of prematurity. In this study we explore the relationship between RDS and free thyroxin (FT4), thyroid stimulating hormone (TSH) in preterm neonates during 1st postnatal 24 hours to explore whether thyroid hormones affect lung surfactant production and hence occurance of RDS or not and after the 2nd postnatal day to explore whether hypoxia from RDS affects thyroid hormones level or not.

Key Words:

(Prematurity - Respiratory distress syndrome (RDS) – free thyroxin (FT4), thyroid stimulating hormone (TSH))

Abbreviations

AAPCON American Academy of Pediatrics, Committee on

Nutrition

ACOG the American College of Obstetricians and

Gynecologists

ADHD attention deficit hyperactivity disorder anti-HBs antibody to hepatitis B surface antigen

AP50 acute-phase proteins

BCG Bacillus Calmitte Guirette

BMI body mass index

BPD Broncho-Pulmonary Dysplasia

C cells calcitonin cells

CH50 total hemolytic complement

CPAP continuous positive airway pressure

CPS Canadian Pediatric Society

Type I deiodinaseTypeII deiodinase

D3 inner-ring (tyrosyl) iodothyronine monodeiodinase

DCD Developmental coordination disorder

DIT di-iodotyrosine

ELBW Extremely low birth weight

ESPGAN-CON European Society of Pediatric Gastroenterology and

Nutrition, Committee on Nutrition of the Preterm

Infant; VLBW, very low birthweight.

FT4 free T4

GBS gram positive streptococci

D

HBIG hepatitis B immunoglobulinsHBsAg hepatitis B surface antigen

HFOV high frequency oscillatory ventilation

Hib Haemophilus influenzae type b

HMD hyaline membrane disease

HSA human serum albumin

IL-1 interleukin -1

IPPV intermittent positive pressure ventilation

intramuscular polio vaccine
 IUGR Intrauterine growth restriction
 IVH Intraventricular hemorrhage
 L/S ratio. Lecithin/ sphingomyelin ratio
 MDI iodothyronine monodeiodinases

MI myocardial infarction
MIT mono-iodotyrosine

mRNA messenger riboneucleic acid
NEC Necrotizing enterocolitis

NICHD the National Institute of Child Health and Human

Development

NICU neonatal intensive care unit
NIH National Institutes of Health

NK natural killer

NTI nonthyroidal illness

P properdin

parafollicular C cells parafollicular calcitonin cells
PDA Patent Ductus Arteriosus

PEEP positive end expiratory pressure

PG phophatidylglyserol

PIE pulmonary interstitial emphysema

 \mathbf{E}

PMR perinatal mortality rate
PN parenteral nutrition

PPROM premature rupture of the amniotic membrane

r T3 reverse Triiodothyronine

RDA recommended dietary allowance
RDS Respiratory Distress Syndrome

SF-albumin ratio surfactant-albumin ratio
SGA small for gestational age

SP-B surfactant protein B
SP-D surfactant protein D
T (2) diiodothyronines
T3 triiodothyronine

T4 thyroxine

TBG thyroid-binding globulin
TBG thyroid binding globulin

TBII thyrotropin-binding inhibitory immunoglobulins

TBPA thyroxine-binding prealbumin

TG thyroglobulin
TH thyroid hormone

The NMR neonatal mortality rate

TRH thyrotropin-releasing hormone
TSH thyroid stimulating hormone

TSI Maternal thyroid-stimulating immunoglobulins
TTR transthyretin or thyroxine-binding prealbumin

List of figures

Number of figure	Title	Page
1A	Assessment of gestational age—new Ballard score	7
2A	Measurement of popliteal angle with a geniometer in a) preterm newborn and b) term newborn	9
1B	Histologic appearance of the lungs in an infant with respiratory distress syndrome. Note the marked atelectasis and so-called hyaline membranes lining the dilated alveolar ducts	30
2B	Incidence of RDS by gestational age	33
3B	Silverman –Anderson index assessment of RDS	36
4B	Typical radiographic appearance of respiratory distress syndrome with reticulogranular infiltrates and air bronchograms.	41
5B	Use of surfactant for respiratory distress syndrome (RDS)	48

1C	Control of thyroid secretion	53
2 C	Steps in the synthesis of thyroid hormones	54
3C	Maturation of fetal thyroid gland development and of thyroid hormone secretion.	61
4 C	Pathway of Thyroid Hormone Metabolism	63
1 D	Comparison between normal and RDS neonates as regard FT4	64
2D	Comparison between normal and RDS neonates as regard TSH.	64
3D	Comparison between normal and RDS neonates as regard gestational age	75
4D	Comparison between normal and RDS neonates as regard the body weight	76
5D	Comparison between normal and RDS neonates as regard Appar score	76
6D	The relationship between gestational age and RDS.	77
7D	Correlation between FT4 and TSH in all studied groups.	83
8D	Correlation between Apgar score and TSH in all studied groups.	84

List of tables

Number of table	Title	Page
1A	Methods for Determining Gestational Age	6
2A	Neurological Maturation of the Fetus and Newborn (Lissauer, 2006)	10
3A	Body Composition of Average Appropriate-for-Gestational-Age Fetus AQor Neonate Weighing 750, 1000, 2000, and 3500 g	14
4A	Summary of Published Complement Levels in Neonates	16
5A	Morbidity by Gestational Age (23–28 wk) for Infants Born in the NICHD Neonatal Research Network	18
6A	Changes in Survival Rates over Time	19
7A	Recommended Oral Intake of Vitamins for Infants	22

8A	Recommended Oral Intake of	23
	Mineral and Trace Elements for	
	Preterm Infants	
1B	Blood gas monitoring techniques	39
2B	Acceptable Criteria for	45
	Confirmation of Gestational Age	
1D	Clinical and laboratory data of the	70-71
	neonates with respiratory distress	
	syndrome (RDS group)	
2D	Clinical and laboratory data of the	72
	neonates without respiratoy distress syndrome (control group)	
3D	Descriptive statistical analysis of the	73
SD	infants gender in both groups(RDS	13
	and Control)	
4D	Comparison between normal and	73
	RDS neonates as regard FT4&TSH.	
5D	Comparison between normal and	75
	RDS neonates as regard	
	weight, gestational age and Apgar	
_	score.	
6D	The relationship between gestational age and RDS.	77
7D	Comparison between normal and	78
	RDS neonates as regard mode of	
	delivery and condition of the mother	

8D	Comparison between normal and RDS neonates whose samples taken during 1st postnatal 24 hours	79
9D	Comparison between normal and RDS neonates whose samples taken from the 3rd postnatal day.	80
10D	Comparison between control samples taken during 1st postnatal 24 hours and those taken from the 3rd postnatal day.	81
11D	Comparison between RDS samples taken during 1st postnatal 24 hours and those taken from the 3rd postnatal day	81
12 D	Correlation between FT4, weight, gestational age, Apgar score and TSH in all studied groups.	82

Introduction

1 Prematurity is a common problem in our neonatal intensive care units .It's defined as occurance of birth through the end of the last day of 37th week of gestation. It represents 12% of all births in united status, the incidence increases in recent years. Although most premature deliveries occur for unkown reasons, there are many risk factors associated with prematurity as low socio economic status, maternal illness, maternal activity, multiple gestations, poor fetal condition,ETC.

It results in many complications in the form of respiratory, cardiovascular,neurological,hematological,metabolic and immunological problems.(Cloherty et al, 2008).

Respiratory distress syndrome (RDS) is one of the most common respiratory complications of prematurity, It's a clinical diagnosis which is warranted in a pretern newborn with respiratory difficulty, including tachypnea>60 breath per minute, chest retractions and cyanosis in room air that persist or progress over the 1ST 48-96h of life and a characteristic chest X ray appearance(a fine reticular granularity of the parenchyma and air bronchograms) (Stoll and Kliegman, 2004).

It occurs in 60-80% of infants less than 28 weeks of gestation, in 15-30% of those between 32 &36 weeks,in about 5% beyond 37 weeks and rarely at term (Miller ,2002).

Signs of RDS usually appear within minutes of birth, although they may not be recognized for several hours in larger premature infants .(Levine et al ,2001)

Factors increase risk of RDS are prematurity, male sex, cesarean section, maternal diabetes and Hydrops fetalis,

Factors decrease risk of RDS are chronic intrauterine stress, maternal hypertention, corticosteroids and thyroid hormones (Gomella et al,2004).

Management includes antenatal corticosteroids (**Jope**, **2000**), surfactant replacement, respiratory support, antibiotics, fluid support and sedation. (**Soll RF**, **2002**)

Major morbidity and poor postnatal growth remain high for the smallest infant with RDS.

3 A variety of hormones including glucocorticoids and thyroid hormones are considered to influence pulmonary development and lung surfactant production.glucocorticoids can interact synergistically with other factors such as thyroid hormones and prolactin to promote early lung maturation several clinical studies have confirmed that pregnant women at risk of preterm delivery benefit from a combined treatment of thyroid releasing

hormone(TRH) and glucocorticoids, although several recent multicenter trials have contraindicated these findings. (Tanaka et al, 2007).

Since it has been reported that **TSH** surge is stimulated by stress at birth, which in turn enhances increased production of lung surfactant and since it has been known that intrauterine **thyroid hormone** deficiency may be one of the factors predisposing to RDS in preterm infants.

Many studies were done to report the relationship between RDS and **thyroid hormones** levels but reports are controversial; so we make our study to explore this field.