Correlation Between Plasma Fibrinogen Levels and Clinical Outcome in Patient with Acute Ischemic Stroke

Thesis Submitted for Partial Fulfillment of Master Degree of Neurology

By

Romany Adly Yousef

M.B.,B.Ch

Supervised By

Prof. Mahmoud Hemeda Mahmoud AL-Raqawy

Professor of Neuropsychiatry Faculty of Medicine - Ain Shams University

Prof. Nahed Salah El-Din Ahmed

Professor of Neuropsychiatry Faculty of Medicine - Ain Shams University

Dr. Dina Mohamed Abd El-Gwad

Lecturer of Neuropsychiatry
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2013

In the name of "Allah" the most Gracious and most Merciful, for bestowing his blessings upon me, granting me the power to proceed and for stretching out his hand with knowledge to help me accomplish this work.

There are no words to show my appreciation for Prof. Dr. Mahmoud Hemeda Mahmoud AL-Raqawy, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for his enormous help, for the enduring wisdom that this work retains from his invaluable years of expertise and input. His constructive criticism, meticulous revision, his guidance, and tremendous support that enabled me to accomplish this work.

I am profoundly grateful to Prof. Dr. Nahed Salah El-Din Ahmed Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for being there when I needed her most, for giving me answers when I couldn't find them anywhere else, for being there every single

step and for her inspiring passion for this work. Thank you for your encouragement, supervision, and continuous support.

My most sincere appreciation goes to Dr. Dina Mohamed Abd El-Gwad lecturer of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for her generous help and her precious time, and for her relentless mentoring and determination to set this work straight from the beginning, her sincere effort and tolerance were inspiring.

I would like to express my feelings of admiration, love and respect to my Family for their overwhelming support

Dedication

To

The memory of my father,

To my mother, my two

brothers and my sister

List of Contents

Title	Page
♦ List of Abbreviations	
♦ List of figuresIV	
♦ List of TablesVI	
♦ Introduction1	
♦ Aim of the Work5	
♦ Review of the Literature:	
• Chapter (1): Acute ischemic stroke6	
• Chapter (2): Risk factor of ischemic stroke10	
• Chapter (3): Pathogenesis of acute ischemic stroke	
• Chapter (4): Fibrinogen and acute ischemic stroke	
♦ Methods and subject 57	
• Results	
♦ Discussion86	
♦ Summary91	
♦ Conclusion	
♦ Recommendations95	
♦ References	
♦ Appendix113	
Arabic Summary	

List of Abbreviations

AAASPS	African American Antiplatelet Stroke Prevention Study			
ATBC	Alph- tocoherol Beta carotene cancer prevention study			
ACAS	Asymptomatic Carotid Atherosclerosis Study			
ADA	American Diabetes Association			
ADP	Adenosine diphosphate			
АНА	American Heart Association			
ASA	American Stroke Association			
APCSC	Asia Pacific Cohort Study Collaboration			
ATP	Adenosine triphosphate			
ARIC	Atherosclerosis Risk In Communities			
AF	Atrial Fibrillation			
ACEIs	Angiotensin converting enzyme inhibitors			
ARBs	Angiotensin Receptors Blockers			
ACAS	Asymptomatic Carotid Artery Stenosis			
ACST	Asymptomatic Carotid Surgery Trail			
ALLHAT	Antihypertensive and lipid lowering treatment to prevent heart attack trail			
ASCOT	the Anglo- scandinavian cardiac outcome trial			
BBs	Beta Blockers			
BI	Barthel index			
BIP	bezafibrate infarction prevention			
BMI	Body Mass Index			
BP	Blood Pressure			
CBF	Cerebral Blood Flow			

CDC	Center of Disease Control			
CEA	Carotid endarterectomy			
CEE	Combined equine estrogens			
CVD	Cardio Vascular Disease			
DALYS	7S Disability- Adjusted life years			
DIAS	Desmoteplase in acute stroke			
DM Diabetes Mellitus				
DWI	Diffusion weighted imaging			
EU	European Union			
ECASS III European Cooperative Acute Stroke Study				
ESPS-2	The second European Stroke Prevention Study			
FAD Food and Drug Administration				
GRACE	Greek – Atorvastatin and coronary heart disease evaluation			
HRQOL Health – Related Quality of Life				
HRT	Hormonal Replacement Therapy			
HTN Hypertension				
ICA	Internal carotid artery			
ICAM	Intracellular adhesion molecule			
ICH	Intracranial hemorrhage			
IDH	Isolated Diastolic Hypertension			
IIT	Intensive Insulin Therapy			
ISH	Isolated Systolic Hypertension			
KLIS Kyushu lipid intervention study				
LMW Low molecular weight				
MCA	Middle Cerebral artery			
MPA	Medroxy progesterone acetate			

MRFIT	Multiple Risk Factor Intervention Trial			
NINDS	National Institute of Neurological Disorders and stroke			
NMDA	N-methyl-D-aspartate			
NOMAS	Northen Manhattan Study			
NVAF	Non Valvular Atrial Fibrillation			
OCs	Oral Contraceptives			
PPAR-a	Peroxisome Proliferator Activator Receptor –a			
PROSPER	Prospective Study of Pravastatin in Elderly at Risk Study			
PROCAT	Prolyse in Acute Cerebral Thromboembolism			
QOL	Quality of Life			
RELP	Restriction Fragment Length Polymorphism			
SAH	Subarachnoid haemorrhage			
SDH	Systolic and Diastolic Hypertension			
SHS	Strong Heart Study			
SLSR	South London Stroke Register			
SSCP	Single Strand Conformation Polymorphism			
TASS	Ticlopidine Aspirin Stroke Study			
TIA	Transient Ischemic attack			
TF	Tissue Factor			
WHI	Women Health Initiative			
WHS	Women Health System			
TIA TF WHI	Transient Ischemic attack Tissue Factor Women Health Initiative			

List of Figures

	Tab. No	Title	Page
F	igure (1): Hypertension	and Stroke	15
		rochemical changes after	
F	igure (3): Precipitating f	factors and cause of strok	e33
F	• , ,	to injury hypothesis of ath	
F	igure (5): Endothelial dy	ysfunction in atherosclero	osis38
F	igure (6): Fatty-streak fo	ormation in atheroscleros	is38
	• , ,	an advanced, complicated	
F	igure (8): Unstable fibro	ous plaques in atheroscler	osis41
F	igure (9): Sex distribution	on	61
F	igure (10): Handedness	distribution	62
F	igure (11): Risk factor f	Frequency	63
F	igure (12): Number of r	isk factor frequency	64
F	igure (13): CT category	······································	65
F	igure (14): NIHSS amo	ng patients	66
F	igure (15): Barthel inde	x among patients	66
F	igure (16): Hypertensio	n and fibrinogen level	68

	Tab. No	Title	Page
F	igure (17): NIHSS and fib	rinogen level	78
F	igure (18): Barthel index a	and fibrinogen level	80
F	igure (19): Follow up NIH	ISS and fibrinogen lev	el82
	igure (20): Follow up Bart vel	•	

List of Tables

Tab. No	Title	Page
Table (1): 1	Risk factors distribution among patients	62
Table (2):]	Number of risk factor among patient	63
Table (3):]	Fibrinogen distribution among patients	65
Table (4):	Correlation among HTN and fibrinogen le	evel67
Table (5):	Correlation among DM and fibrinogen le	vel69
Table (6):	Correlation among dyslipidemia and	fibrinogen
	level	70
Table (7):	Correlation among number of risk	factors and
	fibrinogen level	71
Table (8):	Correlation among RT or LT hemi	sphere and
	fibrinogen level	
Table (9):	Correlation among size of infa	rction and
	fibrinogen level	73
Table (10)	: Correlation among circulation aff	ected and
	fibrinogen level	74
Table (11):	: Correlation among cortical or subc	ortical and
	fibrinogen level	75
Table (12):	: Correlation among lobe affected and	fibrinogen
	level	76
Table (13)	: Correlation among NIHSS in acute	onset and
	fibrinogen level	77
Table (14):	: Correlation among Barthel index in the	ne first and
	fibrinogen level	79
Table (15):	: Correlation among NIHSS in	follow up
	(after three months) and fibrinogen leve	1 81

Table (16):	Correlation	between	Barthel	index	in follow	w up
	(after three	months) a	nd fibrin	ogen le	vel	83
Table (17):	Regression	coefficier	nt of HT	'N and	Barthel	with
	dependent v	ariable (fi	brinogen	ı)ı		85

INTRODUCTION

The World Health Organization has defined stroke as "rapidly developing clinical signs of focal (at times global) disturbance of cerebral function, lasting more than 24 hours or leading to death with no apparent cause other than that of vascular origin." By conventional clinical definitions, if the neurologic symptoms continue for more than 24 hours, a person is diagnosed with stroke (Sacco, 2005).

Mortality from stroke was the fourth leading cause of death in the United States, and stroke was a leading cause of long-term severe disability. Nearly half of older stroke survivors experience moderate to severe disability (Miniño et al, 2011).

A stroke is caused by the interruption of the blood supply to the brain, usually because a blood vessel bursts or is blocked by a clot. This cuts off the supply of oxygen and nutrients, causing damage to the brain tissue. The most common symptom of a stroke is sudden weakness or numbness of the face, arm or leg, most often on one side of the body (WHO 2010).

Other symptoms include: confusion, difficulty speaking or understanding speech; difficulty seeing with one or both eyes; difficulty walking, dizziness, loss of balance or coordination; severe headache with no known cause; fainting or unconsciousness (Goldstein and Simel, 2005).

Although the association between plasma fibrinogen concentrations and risk of coronary heart disease is well described data on the association of plasma fibrinogen with risk of total stroke. Fibrinogen, a clotting factor, may accelerate the thrombotic process and could also act as a marker of inflammation. Three prospective studies of Caucasians showed that high plasma fibrinogen concentrations were associated with increased risk of total stroke (**Sato et al, 2000**).

The recommendations for primary prevention of ischemic stroke and myocardial infarction focus on cholesterol, hypertension, smoking habits and the development of fibrinogen related ischemic complications of atherosclerosis that can be easily identified and treated (**Scarabin et al, 2003**).

There is an association between an increase fibrinogen level in plasma and prognosis after acute ischemic stroke showing that patients with lower initial fibrinogen levels (4.5 g/L) had better functional outcomes even when corrected for age and initial stroke severity. They confirmed a relationship

between fibrinogen and prognosis independent of other cardiovascular risk factors and stroke severity. Because patients at risk for the development of fibrinogen-related ischemic complications of atherosclerosis can be easily identified and non-pharmacological treatment (cessation of smoking, diet, exercise) seems to lower raised fibrinogen levels together with several drugs (fibrates, pentoxifylline, defibrotide) clinically oriented secondary prevention recommendations should consider the role of fibrinogen in ischemic stroke(**Del Zoppo et al, 2009**).

The clinical use of fibrinogen measurement should be based on evidence regarding the ability of fibrinogen to predict ischemic stroke prognosis beyond that of current prognostic prediction methods or models, and evidence regarding the use of prognosis prediction to treatment of ischemic stroke. A large body of well-done studies demonstrates an association between fibrinogen levels and ischemic stroke prognosis. There are, however, uncertainties in the exact role that fibrinogen plays in the determining ischemic stroke prognosis and the reliability of fibrinogen assessment (Woodward et al, 2005).