Correlation of Serum Neopetrin as an Inflammatory Marker to Different Stages of Liver Cirrhosis

Thesis
Submitted for Partial Fulfillment of Master Degree
in Internal Medicine

By **Mai Samir Mohamed**

M.B., B.Ch - Ain Shams University

Supervised By

Prof. Dr/ Rawya Abd El-Salam Ibrahim

Professor of Internal Medicine Faculty of Medicine- Ain Shams University

Prof. Dr/ Tarek Mohamed Yousef

Professor of Internal Medicine Faculty of Medicine- Ain Shams University

Dr/ Mohamed Lotfy Siliman

Lecturer of Internal Medicine Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Acknowledgment

I would like to begin by thanking **ALLAH** for granting me the ability to complete this work.

I would like also to express my thanks to *Professor DR*. *Rawya Abd El-Salam Ibraheem*, Professor of Internal Medicine, who guide me to perform that work.

I would like to express my thanks to *Dr. Tarek Mohamed Yousef*, Professor of Internal Medicine, Faculty of Medicine, Ain Shams University, for his encouragement, assistance, and continuous guidance through conduction of this work.

I would like to express my deepest thanks to *Dr. Mohamed Lotfy*, Lecturer of Internal Medicine, Faculty of Medicine, Ain Shams University, for his kind assistance and continuous support and supervision through all stages of this work.

I would like also to express my thanks to *Dr. Ahmed Nabeeh*, Headmaster of Laboratory Department, Maadi Military Hospital, and *Dr Hany Mores*, Professor of Clinical Pathology, Maadi Military Hospital, for his assistance in specimen collection from patients.

I would like also to express my thanks to *Dr. Alaa El-Din Elsayed*, Headmaster of Gastroenterology and Hepatology Department, and *Dr. Ashraf Abu Bakr*, Professor of Gastroenterology and Hepatology, Maadi Military Hospital, for their encouragement and assistance in selection of patients.

Contents

	Page
LIST OF ABBREVIATIONS	I
LIST OF TABLES	IV
LIST OF FIGURES	VI
INTRODUCTION	
AIM OF THE WORK	3
REVIEW OF LITERATURE	
Chapter one: Liver Cirrhosis:	4
Introduction	
Epidemiology	7
• Etiology of liver cirrhosis	
• Liver cirrhosis in Egypt	10
Pathophysiology of liver cirrhosis	20
Pathology of Liver cirrhosis	24
Clinical presentation	28
• Complications	30
• Investigations	
Management of liver cirrhosis	58
Chapter two: Serum Neopetrin:	80
• Introduction	80
Biosynthesis	81
Diagnostic application of Neopterin	82
Measurement of Neopterin	85
PATIENTS AND METHODS	86
RESULTS	93
DISCUSSION	
SUMMARY AND CONCLUSION	
RECOMMENDATIONS	
REFERENCES	
ADARIC SUMMADV	,,, 1 <i>4 </i>

Abbreviations

AAT ----- Alpha1-antitrypsin **ADH** ----- Anti diuretic hormone AFP----- Alpha feto protein **ALD** ----- Alcoholic Liver Disease **ALT** ----- Alanine aminotransferase ANA ----- Anti nuclear antibody **Anti-LKM Ab** Anti- liver-Kidney-microsomal antibody **APC** ----- Antigen presenting cell **AST**------ Aspartate transaminase **CHF** ----- Congestive Heart Failure CMV ----- Cytomegalo virus **CT** ----- Computerized tomogrph **DDR** ----- Discoidin Domain Receptors **DNA** ----- Deoxyribonucleic acid **ECM**------ Extracellular matrix **EGF** ----- Epidermal growth factor Fe ----- Iron **FGF**-----Fibroblast growth factor **GIT** ----- Gastrointestinal tract **GTP** ----- Guannine Tri-phosphate

HBsAg ------ Hepatitis B Surface Antigen

HBV ----- Hepatitis B Virus

HCC ----- Hepatocelllular Carcinoma

HCV ----- Hepatitis C virus

HGF ----- Hepatocyte growth factor

HIV ----- Human immunodeficiency virus

HLA ----- Human leukocyte Antigen

HPH ------ Hepatopulmonary hypertensio

HPS------ Hepatopulmonary syndrome

HPS----- Hepatopulmonary syndrome

HPV ----- Human papilloma virus

HRS ----- Hepatorenal syndrome

HTN ----- Hypertension

INH ----- Isonazide

INR ----- International normalized ratio

IPVD ----- Intrapulmonary vasodilatation

LC ----- Liver Cirrhosis

LL-----Lower Limb

MMP ----- Matrix MetalloProteinases

NASH ----- Non Alcoholic Steatohepatitis

PBC-----Primary Biliary Cirrhosis

PDGF ----- Platelet-Derived growth factor

PHG ----- Portal hypertensive gastropathy

Sh ----- Shistosoma Hematopium

Sm ----- Shistosoma mansoni

Th1 ----- T helper 1 cell

TIMP---- Tissue Inhibitor of MetalloProteinases

TIPS ----- Transjagular intrahepatic portosystemic shunt

V.C-----Vasoconstritor

V.D-----Vasodilato

VEGF ----- Vascular endothelial growth factor

WHO ----- World Health of Organization.

List of Tables

Table No.	Page No.	
Tables of	Review:	
Table (1):	Serum Alpha-Fetoprotein (AFP) Determination in Liver Disease	
Table (2):	The score employs five clinical measures of liver disease. Each measure is scored 1-3, with 3 indicating most severe derangement 54	
Table (3):	Chronic liver disease is classified into Child- Pugh class A to C, employing the added score from above	
Tables of Results:		
Table (1):	Age distribution between studied groups 94	
Table (2):	Gender distribution between studied groups 95	
Table (3):	Shows comparison between four groups as regard clinical presentation	
Table (3):	Comparison between four groups as regard Hb	
Table (4)	Comparison between four groups as regard Plt	

Table (5):	Comparison between four groups as regard ALT
Table (6):	Comparison between four groups as regard Na
Table (7):	Comparison between four groups as regard MELD score
Table (8):	Comparison between four groups as regard Ultrasound finding
Table (9):	Comparison between four groups as regard Liver Cirhhosis by U/S
Table (10):	Correlation between four groups and serum Neoptarin
Table (11):	Correlation between Serum Neopterin and MELD scoring system
Table (12):	Correlation between Serum Neopterin and different parameters

List of Figures

Figure No.	Page No.
Figures of	Review:
Figure (1):	Shows the prevalence of HCV In the world 9
Figure (2):	Map of Egypt showing prevalence of <i>Sh.</i>
Figure (3):	Age- and gender adjusted prevalence of anti- HCV among 4, 000 inhabitants of a community in the Nile delta having an overall 24% prevalence of HCV antibodies 12
Figure (4):	Ongoing liver damage with liver cell necrosis followed by fibrosis and hepatocyte regeneration results in cirrhosis
Figure (5):	This is an example of a micronodular cirrhosis
Figure (6):	Microscopically with cirrhosis, the regenerative nodules of hepatocytes are surrounded by fibrous connective tissue that bridges between portal tracts
Figure (7):	Shows different stages of liver cirrhosis 27

Figure (8):	Shows It gastric vein which help in formig fundal varices	
Figure (9):	Shows dominant venous outflow from spleen into gastric varices with opening of splenic vein	
Figure (10):	Shows esophageal varices ligated with rubber band by endoscope	
Figure (11):	Shows endoscopic finding of portal hypertensive gastropathy in cirrhotic patient 65	
Figure (12):	Shows liver cirrhotic patient with tense ascitis	
Figure (13):	X-ray shows rt pleural effusion in liver cirrhosis	
Figure (14):	Chemical structure of Neopterin 81	
Figures of Results:		
Figure (1):	Age distribution between four groups 94	
Figure (2):	Gender distribution between all groups 95	
Figure (3):	shows comparison between four groups as regard MELD score	
Figure (4):	Shows the significant difference between all groups and Serum Neopterin	

Figure (5):	Shows high significant positive correlation between Neopterin and MELD (r=0.757,
	P<0.01)
Figure (6):	Shows positive correlation between serum Neopterin and age (r=0.671, P<0.01) 106
Figure (7):	Shows positive correlation between Serum Neopetrin and Hb (r=0.433, P<0.03) 107
Figure (8):	Shows positive correlation between serum Neopterin and plt (r=0.605, P<0.01) 108
Figure (9):	Shows positive correlation between serum Neopterin and Serum Bilirubin (r=0.678, P<0/01)
Figure (10):	Shows positive correlation between serum Neopterin and serum Albumin (r=0.648, P< 0.01)
Figure (11):	Shows positive correlation between serum Neopterin and INR (r=0.536, P< 0.01) 111
Figure (12):	Shows positive correlation between serum Neopterin and pulse (r=0.341, P< 0.02) 112

Introduction

Neopterin, a pyrazino-pyrimidine compound, is synthesized by monocytes and macrophages in response to interferon-(IFN-) produced by activated T cells (*Lhee et al.*, 2006).

Neopterin levels are elevated in conditions of T-cell or macrophages activation such as systemic lupus erythematosus and hepatitis C (*Lhee et al., 2006*). It enhances macrophage cytotoxicity through its interactions with reactive oxygen, nitrogen, and chloride species (*Lahdo Imad et al., 2013*).

Measurement of neopterin in body fluids can be a reliable indicator of the cellular (macrophages) immunological response in hepatitis C virus infection (*Berdowska and Żwirska-Korczala*, 2001). Moreover, enhanced concentrations of neopterin have been shown to have a prognostic significance (*Farci et al.*, 2005).

Neopterin concentrations in humans reflect the degree of Th1-type immune activation. In chronic infections T cells compartmentalized in the liver contribute to hepatic damage, which is mainly Th1 mediated. It is these activated T cells in the liver that are responsible for the liver damage that results (*Antoniello et al.*, 1989).

Neopterin concentrations in chronic liver disease increased irrespective of underlying cause and stage of disease. Serum neopterin levels correlated with serum AST, ALT activities, and degree of necrosis. Cirrhotic patients displayed higher levels than non-cirrhotic (*Farci et al.*, 2005).

Neopterin is a more sensitive marker for severity of liver disease than established markers of inflammation (*Lahdo Imad et al.*, 2013).

Aim of the Work

Correlation between serum levels of Neopetrin as a systemic inflammatory marker to different stages of liver cirrhosis.

Chapter (1)

LIVER CIRRHOSIS

Introduction:

The word cirrhosis comes from the Greek word kirrhos, which means orange Yellow (Steingerður Anna, 2008).

The definition of cirrhosis remains morphological, described by a working party for WHO in 1978 as: "a diffuse process characterized by fibrosis and the conversion of normal liver architectures into structurally abnormal nodules" (Steingerður Anna, 2008), but It is defined histologically as development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury, that leads to portal hypertension and end stage liver disease (Sherlock et al., 2002). And also it can be known by three main characteristics: