INTRODUCTION

The incidence and the mortality attributed to malignant lymphomas have steadily increased over the last four decades and now non-Hodgkin's lymphoma (NHL) accounts for approximately 50,000 new malignancies diagnosed annually (Jaffe et al., 1999).

NHL is often characterized by a higher incidence of specific chromosomal translocations (Armitage and Weisenburger, 1998).

One of the common aberrations seen in NHL-patients is t(14;18)(q32;q21.3) (Estalilla et al., 2000). Several studies were done to know the incidence of t(14;18) among different histologic subtype of NHL (Rowley, 1988 and Pezella and Mason, 1990).

Follicular NHL is frequently associated with t(14;18), leading to overexpression of bcl-2 and subsequent inhibition of apoptosis (**Tsujimoto et al., 1984**). The t(14;18) chromosomal translocation, although widely recognized as a cytogenetic abnormality associated with follicular lymphoma, has a widely variable frequency in this type of lymphoma (**Pezella et al., 1990**).

The presence of t(14;18)-positive cells, analyzed by PCR is assumed to correlate with lymphoma activity. However, until now the

clinical significance of the presence or absence of t(14;18)-positive cells in the bone marrow and peripheral blood has not been settled (Lambrechts et al., 1994).

Quantitation of circulating t(14;18)-positive ells, showing variation at diagnosis and over time, may lead to a better understanding of the natural course of the disease and effects of treatment (**Lopez-Guillermo et al., 2000**).

Olsson and his colleagues (1999) used real-time quantitative PCR to detect t(14;18) positive cells present in human lymphoma tissue, bone marrow aspirates and peripheral blood mononuclear cells.

Aim of the Work

This work **aims** at studying the incidence of the chromosomal abnormality t(14;18) in B-cell NHL and to quantitate t(14;18)-positive cells using Real-time PCR.

QUANTIFICATION OF CHROMOSOMAL t (14;18) IN B – CELL NHL PATIENTS USING REAL – TIME PCR

Thesis

Submitted for Partial Fulfillment of M.D. in Clinical and Chemical Pathology

By
SARAH ADEL LABIB YOUNAN
(M.B., B.Ch., Ms.c. Degree)

Supervised By

Prof. Dr. Mervat Saad El Ansary

Professor of Clinical and Chemical Pathology Faculty of Medicine Cairo University

Prof. Dr. Hamdy Abd El Azeem Abd El Monem

Professor of Clinical Oncology Faculty of Medicine Cairo University

Dr. Nesrine Mohamed El Gharbawi

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2007

ABSTRACT

One of the common aberrations seen in non-Hodgkin's lymphoma (NHL) is t(14;18)(q32;21.3). The aim of this work is to study the incidence and quantity of t(14;18) in B-NHL. 33 patients with B-NHL and 10 controls with non-neoplastic lymphoid tissue disorder were tested for quantitation of t(14;18) by real-time quantitative PCR (RQ-PCR). The incidence of t(14;18) was 6.1% among NHLs, 14.3% among follicular lymphomas (FLs), 5.6% among diffuse large cell lymphomas (DLCLs) and 10% among control group. The value of relative quantification for patients was (1.20 and 0.85), while for control case was (0.6). RQ-PCR is a sensitive and specific procedure. It is an ideal tool for follow-up and quantification of minimal residual disease (MRD).

Keywords:

Real-time PCR, t(14;18).

CONTENTS

	Page
List of Figures	iii
List of Tables	v
List of Abbreviations	vii
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE:	3
CHAPTER I: Non-Hodgkin's Lymphoma:	3
■ Definition and history	3
■ Epidemiology	6
■ Etiology	7
■ Prelymphomatous conditions	12
Histopathological classifications	17
Clinical features	28
■ Staging	36
■ Laboratory investigations	39
CHAPTER II: Cytogenetic Abnormalities in B-cell	
Non-Hodgkin Lymphoma:	42
■ Molecular consequences of the most frequently occurring chromosomal	
rearrangements in B-cell NHL:	47
I. Translocations:	47
1. Burkitt's lymphoma	47
2. Follicular lymphoma.	51
3. Diffuse large B-cell lymphoma	57
4. Mantle cell lymphoma	61
5. Lymphoplasmacytoid lymphoma	65
6. Mucosa-associated lymphoid tissue lymphoma.	66

	Page
II. Trisomy in NHL:	68
1. Trisomy 8	68
2. Trisomy 12	68
3. Trisomy 3	69
III.Deletions in NHL:	70
1. del(13q)	70
2. del(11q)	71
3. del(6q)	72
4. del(7q)	73
5. del(17p)	74
Clinical value of genetic lesions in NHL	75
CHAPTER III: Molecular Diagnosis in B-NHL:	80
Southern blot	82
■ PCR and RT-PCR	82
■ FISH	83
■ Microarray	84
Real-time PCR:	88
- Principles and techniques of RQ-PCR	89
- Real-time PCR instrumentation.	102
- Real-time PCR quantitation	105
- Applications and uses of real-time PCR	115
Minimal residual disease:	118
- Methods for detection of MRD	122
PATIENTS AND METHODS	130
RESULTS	167
DISCUSSION	213
SUMMARY AND CONCLUSIONS	233
RECOMMENDATIONS	236
REFERNCES	238
ARABIC SUMMARY	

LIST OF FIGURES

Fig.	Title	Page
1	t(8;14) of Burkitt's lymphoma and its variants	48
2	t(14;18) of follicular lymphoma.	51
3	IgH and BCL-2 loci-MBR and mcr breakpoint clusters	53
4	t(2;3) and t(3;14) in DLCL	58
5	t(11;14) in MCL	64
6	del(13q)	70
7	del(6q)	72
8	SYBR Green I as a DNA-binding dye for real-time	
	detection of PCR.	92
9	Fluorescence Resonance Energy Transfer (FRET)	
	using Hybridization.	95
10	Hydrolysis probe (Taqman assay)	98
11	The molecular beacons assay	100
12	The Run Screen of the LightCycler software during PCR	104
13	LightCycler amplification plot for PCR quantitation	106
14	Absolute quantification using external standards	109
15	Melting curve analysis.	114
16	Detection of single nucleotide polymorphisms or	
	mutations by using hybridization probes.	114
17	Location of amplification primers and hybridization probes	144
18	The LightCycler Instrument.	150
19	The design of the LightCycler system.	151
20	The LightCycler carousel.	152
21	Borosilicate glass capillaries.	152
22	Temperature profile of PCR with hybridization probes	156

Fig.	Title	Page
23	Histopathological data of NHL patients	173
24	Site involved with NHL.	181
25	Patients in various stages of lymphoma.	181
26	Clinical data of NHL patients.	182
27	Haematological data of NHL patients	193
28	t(14;18) by RQ-PCR among all NHL patients	196
29	t(14;18) by RQ-PCR among FL patients	196
30	t(14;18) by RQ-PCR among DLCL patients	197
31	t(14;18) by RQ-PCR among control group	199
32	Value of positivity for t(14;18) of cases and control	201
33	Real-time PCR runs on the LightCycler	202
34	A REAL-time PCR run in which the case No.1 had	
	a follow up sample	203
35	This figure shows a continuous arrow pointing to a positive	
	reading for t(14;18) which belongs to patient No. 8 (FL)	
	at her first presentation.	204
36	The arrow points at the case No.8 after	
	continuation of chemotherapy	205
37	A small run [Real-time PCR] which included the calibrator	
	(positive control) represented by the dotted arrow and	
	Follicular lymphoma patient No. 14 represented by the	
	continuous arrow showing negativity for t(14;18)	206
38	The Real-time PCR run of the following cases: case No. 6 (FL),	
	No. 7 (DLCL), No. 10 (DLCL), No. 11 (DLCL), No. 13 (DLCL),	
	No. 16 (DLCL), No. 19 (FL), No. 24 (FL) and No. 25 (FL)	
	together with 3 of the control cases.	207

LIST OF TABLES

Table	Title	Page
1	Comparisons of different classification schemes of NHL	21
2	National Cancer Institute (USA) modification of working	
	formulation for classification of NHL	23
3	The Real Classification.	24
4	Proposed WHO Classification of Lymphoid Neoplasms	25
5	WHO/REAL classification of NHL according to	
	clinical aggressiveness.	26
6	The Ann Arbor staging system.	37
7	St. Jude staging system for childhood NHL	38
8	Common cytogenetic abnormalities in B-cell NHL	67
9	Frequency of 13q deletion among B-NHLs	70
10	Prognostic role of cytogenetics in B-NHL	78
11	The use of PCR techniques in lymphoma diagnosis	83
12	Techniques used in the study of genetic alterations	
	in lymphomas	87
13	Personal data of NHL patients	168
14	Summary of personal data of NHL patients	169
15	Histopathological data of NHL patients	171
16	Summary of histopathological data of NHL patients	172
17	Histopathological data of control group.	174
18	Clinical data of NHL patients	177
19	Summary of clinical data of NHL patients	179
20	Radiological data at presentation and follow-up of NHL patients	185
21	Summary of radiological data of NHL patients at presentation	187
22	Summary of radiological data of NHL patients at follow-up	188

Table	Title	Page
23	Laboratory data of NHL patients at presentation	191
24	Summary of laboratory data of NHL patients at presentation	192
25	Results of Real-time PCR for quantitation of t(14;18)	195
	of NHL patients.	
26	Summary of results of RQ-PCR for t(14;18)	195
	of NHL patients at presentation.	
27	Results of RQ-PCR of t(14;18) of control group.	198
28	Summary of results of RQ-PCR for t(14;18) of control group	199
29	Comparison of results of RQ-PCR for NHL patients	200
	and control group.	
30	Cases and control showing positivity for t(14;18)	201
31	Comparison between t(14;18)-positive and negative patients	208
	regarding risk factors.	
32	Correlation between t(14;18) positivity and clinical data	210
33	Correlation between t(14;18) positivity and	211
	Histopathological type of lymphoma.	
34	Follow-up results of positive cases for t(14;18) by RQ-PCR	212

LIST OF ABBREVIATIONS

ALK : Anaplastic lymphoma kinase

ATM locus : Ataxia telangectasia mutated locus

BL : Burkitt's lymphoma

bp : Basepair

CD : Cluster of differentiation

cDNA : Complementary DNA

CGH : Competitive genomic hybridization

CR : Complete remission

CTL : Cytotoxic T lymphocyte

DLCL : Diffuse large cell lymphoma

dNTP : deoxy nucleoside triphosphate

FCC : Follicle centre cell

FISH : Fluorescent in situ hybridization

FL : Follicular lymphoma

HD : Hodgkin disease

HIV : Human immunodeficiency virus

HTLV-I : Human T lymphotropic virus type I

IHC : Immunohistochemistry

Kb : Kilobase

KDa : Kilo Dalton

LCA : Leucocyte common antigen

mbr : Major breakpoint region

MCL : Mantle cell lymphoma

mM : Milli mole

MRD : Minimal residual disease

MZBCL : Marginal zone B-cell lymphoma

NHL: Non-Hodgkin's lymphoma

NK : Natural killer

PBSC : Peripheral blood stem cells

rpm : Round per minute

RQ-PCR : Real-time quantitative PCR

RS : Read-Sternburg cells

RT-PCR : Reverse transcriptase PCR

SLL : Small lymphocytic lymphoma

SLVL : Splenic lymphoma with villous lymphocytes

SMZL : Splenic marginal zone lymphoma

TCR : T cell receptor

TdT : Terminal deoxynucleotidyl transferase

TMA : Tissue microarray

CHAPTER I NON-HODGKIN'S LYMPHOMA

Definition:

Lymphomas are a heterogeneous group of malignancies of B cells or T cells that usually originate in the lymph nodes but may originate in any organ of the body (Brill et al., 1927).

History:

In **1832, Thomas Hodgkin** published the first article on primary lymphatic malignancy. His work was derived from clinical and gross autopsy findings in seven cases. He was the first to realize that lymphadenopathy could occur as a primary disorder rather than secondary to infection or carcinoma. Since Hodgkin's initial description, there have been four historical phases in the study of NHL: (1) clinical features, 1832 to 1900; (2) histopathology, 1900 to 1972; (3) immunopathology, 1972 to the present; (4) molecular genetics, 1982 to the present. These phases naturally overlap and all contribute to the presentday understanding of NHL.

In 1846, Virchow distinguished lymphoma from leukemia and coined the terms lymphoma and lymphosarcoma. Billorth, in 1871, was the first to use the term malignant lymphoma.

The category of follicular lymphomas was initially recognized in

1916 by Ghon and Remaa, who related such neoplasms to normal lymphoid follicles. Brill and others in 1927 and Symmers in 1927, failed to appreciate the neoplastic nature of many cases of "giant follicular hyperplasia"; however, this oversight was corrected in 1938 with information gained through long-term follow-up. Thus, the neoplastic, indolent, nature of this category of lymphomas became recognized.

In addition to perceiving the aggressive nature of lymphomas composed of large cells, **Roulet**, in 1930, proposed that the origin of such neoplasms was the sinus lining, and he compared their morphology with that of normal reticulum or syncytial network of nodal sinuses. He used the term reticulum cell sarcoma as another term for malignant lymphoma.

In **1942**, **Gall and Mallory** developed a classification scheme for NHL that had both clinical and histopathologic significance. The histopathologic phase of NHL culminated in the 1956 classic work of **Rappaport** who developed a morphologic classification that was reproducible and relevant.

In 1974, Lennert and coworkers & Lukes and Collins classified NHL on the basis of the cell origin within the immune system. Subsequently, monoclonal antibodies to lymphocyte differentiation antigens have been able to detect sequential stages in the development of B & T cells and to identify subtypes of NHL. In the

1980s, the lymphoid origin of NHL was confirmed at the molecular level with the identification of specific Ig gene and T cell receptor (TCR) gene rearrangements (**Korsmeyer**, **1981**).

In 1982, a Working Formulation (WF) of NHLs separated diseases according to histologic grade (low, intermediate and high) and made correlations with survival (Rosenberg et al., 1982). However, classification was based on morphology without utilizing immunophenotyping or molecular genetic techniques.

In **1994**, a Revised European-American Lymphoma (REAL) classification was proposed to identify specific types of lymphomas of B and T cell origin (Harris et al., 1994).

In lymphoma, two fundamental features were correlated with differences in survival namely the identification of certain cell types and growth patterns. Neoplasms composed of small, nonreplicating lymphocytes (lymphocytic, well differentiated lymphocytic) were recognized as a favorable group. Those featuring atypical, mitotically active lymphocytes (lymphoblastic, poorly differentiated lymphocytic) were less favorable.