Effect of Hyperbaric Oxygen Therapy on Gross Motor Development in Severely Spastic Children

Thesis

Submitted in Partial Fulfillment for The Requirements of Doctoral Degree in Physical Therapy

By

Shamekh Mohamed El-Shamy

B.Sc. &M.Sc. in Physical Therapy

Assistant Lecturer of Physical Therapy for Growth and Developmental Disturbances in Children and its Surgery

Supervisors

Prof. Dr. Emam Hassan El-Negamy

Professor in the Department of
Physical Therapy for Growth and
Developmental Disturbances
in Children and its Surgery
Faculty of Physical Therapy
Cairo University

Prof. Dr. Amina Hendawy Salem

Professor of Pediatrics
Faculty of Medicine
Cairo University

Faculty of Physical Therapy
Cairo University
2009

تأثير العلاج بالأكسجين تحت الضغط على التطور الحركي الكبير في الأطفال ذو التشنج الشديد

رسالة مقدمــة من

شامخ محمد الشامي

المدرس المساعد بقسم العلاج الطبيعي لاضطرابات

مراحل النمو والتطور وجراحتها عند الأطفال

كلية العلاج الطبيعي – جامعة القاهرة

توطئة للحصول علي درجة الدكتوراه في العلاج الطبيعي

المش___رفون

أ.د/ أمينة هنداوي سالم

أستاذ طب الأطفال – كلية الطب جامعة القاهرة

أ.د/ إمــام حســن النجمـــى

أستاذ بقسم العلاج الطبيعي لاضطرابات مراحل النمو والتطور وجراحتها عند الأطفال كلية العلاج الطبيعي – جامعة القاهرة

كلية العلاج الطبيعي جامعة القاهرة ٢٠٠٩ Effect of Hyperbaric Oxygen Therapy on Gross Motor Development in Severely Spastic Children./ Shamekh Mohamed El-Shamy; Supervisors: Prof. Dr. Emam Hassan El-Negamy, Professor of Physical Therapy, Department of Growth and Developmental Disturbances and its Surgery in Pediatrics, Faculty of Physical Therapy, Cairo University. Prof. Dr. Amina Hendawy Salem, Professor of Pediatrics, Faculty of Medicine, Cairo University. Doctoral Thesis, 2009.

Abstract

he purpose of this study was to evaluate the effect of hyperbaric oxygen therapy on gross motor development in severely spastic children. Forty spastic children, ranged in age from 3 to 5 years old participated in this study. They were classified randomly into two groups of equal number, (control and study). The control group received a specially designed physical therapy program. The study group received hyperbaric oxygen therapy in addition to the program given to the control group. Gross motor development were assessed before, after one month and after six months of application of the treatment program using Peabody Developmental Motor Scale (PDMS-2). The results of the study revealed no significant difference was recorded between the two groups before treatment. After one month of treatment no significant improvement was recorded in either group. While after 6 months, significant improvement was recorded in the two groups (control & study). There was also significant difference between the two groups in favor of the study group.

(*Key words:* Cerebral palsy, Gross motor development, Hyperbaric oxygen therapy).

تأثير العلاج بالأكسجين تحت الضغط على التطور الحركي الكبير في الأطفال ذو التشنج الشديد

شامخ محمد الشامي ، إشراف: أ.د/ إمام حسن النجمي أستاذ العلاج الطبيعي – قسم العلاج الطبيعي لاضطرابات مراحل النمو والتطور وجراحتها عند الأطفال ، كلية العلاج الطبيعي – جامعة القاهرة – أ.د/ أمينة هنداوي سالم أستاذ طب الأطفال – كلية الطب – جامعة القاهرة.

رسالة دكتوراه ٢٠٠٩

المستخلص

تهدف هذه الرسالة إلي تقييم تأثير العلاج بالأكسجين تحت الضغط علي التطور الحركي الكبير في الأطفال ذو التشنج الشديد. تم إجراء هذا البحث علي أربعين طفلاً ، ممن تتراوح أعمارهم من ثلاث إلي خمس سنوات. تم تقسيمهم إلي مجموعتين متساويتين (دراسة وضابطة) تلقت المجموعة الضابطة برنامج علاجي مكون من مجموعة من التمرينات العلاجية المختارة إلي جانب العلاج الطبيعي الخاص بهؤلاء الأطفال بينما تلقت مجموعة الدراسة العلاج بالأكسجين تحت الضغط بالإضافة إلي ما تلقته المجموعة الضابطة. تم قياس التطور الحركي الكبير قبل ، بعد شهر وبعد ستة أشهر باستخدام مقياس (بيبودي) للتطور الحركي – الطراز الثاني. وقد أظهرت النتائج وجود فروق ذات دلالة أخصائية في نتائج مجموعة الدراسة والمجموعة الضابطة عند مقارنة نتائج قبل وبعد ستة أشهر لكل مجموعة بينما أظهرت مجموعة الدراسة نتائج ذات دلالة إحصائية واضحة عند مقارنة نتائج ما بعد ستة أشهر للمجموعتين (الضابطة والدراسة). ولا توجد فروق في نتائج المجموعتين بعد شهر من العلاج.

(الكلمات الدالة: الشلل المخي – التطور الحركي الكبير – العلاج بالأكسجين تحت الضغط).

ملخص البحث

عنوان البحث:

تأثير العلاج بالأكسجين تحت الضغط علي التطور الحركي الكبير في الأطفال ذو التشنج الشديد

الهدف من البحث:

تقييم تأثير العلاج بالأكسجين تحت الضغط بالإضافة إلي برنامج العلاج الطبيعي على التطور الحركي الكبير في الأطفال ذو التشنج الشديد.

مواد البحث وأساليبه:

تم إجراء هذا البحث علي أربعين طفلاً مصاباً بالشلل الدماغي ذو التشنج الشديد من الجنسين (٢٣ طفل ، ١٧ طفلة) تتراوح أعمارهم من ثلاث إلي خمس سنوات ، وقد تم اختيارهم من العيادة الخارجية بكلية العلاج الطبيعي – جامعة القاهرة ووحدة العلاج بالأكسجين تحت الضغط – معهد ناصر. وقد تم تقسيمهم إلى مجموعتين متساويتين:

المجموعة الأولي: (مجموعة الدراسة)

تحتوي هذه المجموعة على ٢٠ طفلاً (١٢ ذكور ، ٨ إناث) تم تطبيق العلاج بالأكسجين تحت الضغط بالإضافة إلى التمرينات العلاجية المختارة وأيضاً العلاج الطبيعي الخاص بهؤلاء الأطفال بواقع ثلاث جلسات أسبوعية لمدة ستة أشهر.

المجموعة الثانية: (المجموعة الضابطة)

تحتوي هذه المجموعة أيضاً على ٢٠ طفلاً (١١ ذكور ، ٩ إناث) ممن يعانون نفس الأعراض السابقة للمجموعة الأولي وقد تلقت هذه المجموعة التمرينات العلاجية المختارة بالإضافة إلى العلاج الطبيعي الخاص بهؤلاء الأطفال بواقع ثلاث جلسات أسبوعياً لمدة ستة أشهر.

ثم قياس التطور الحركي الكبير للمجموعتين قبل ، بعد شهر وبعد ستة أشهر من تطبيق العلاجات المختلفة باستخدام مقياس (بيبودي) للتطور الحركي – الطراز الثاني.

النتائج:

أظهرت النتائج عدم وجود فروق ذات دلالة إحصائية للمجموعتين عند مقارنة نتائج قبل وبعد شهر من العلاج بينما أظهرت النتائج وجود فروق ذات دلالة إحصائية واضحة لمجموعة الدراسة عند مقارنة نتائج ما بعد ستة أشهر من العلاج للمجموعتين.

التوصيات:

وفقاً للنتائج السابقة نوصى بإضافة العلاج بالأكسجين تحت الضغط لتحسين التطور الحركي الكبير عند علاج الأطفال ذو التشنج الشديد. ونوصي أيضاً بإجراء أبحاث تشتمل علي تأثير العلاج بالأكسجين تحت الضغط كبرنامج علاجي في الحالات المختلفة للشلل المخي التقلصي. كما نوصي بضرورة بدء العلاج مبكراً وفي مراحل عمرية مختلفة لهؤلاء الأطفال مع إضافة وسائل قياسية متقدمة مثل الرسم الكهربائي للعضلات.

Acknowledgment

First of all and above all I would like to kneel thanking God, for giving me the ability and patience to accomplish this work.

I'm deeply and greatly thankful to **Prof. Dr. Emam Hassan El-Negmy**, Professor of physical therapy, Department of physical therapy for Disturbances and surgery of Growth and Development, Faculty of physical therapy, Cairo University, for being the pioneer on creating new ideas in the areas of pediatric habilitation. He gave me a great deal of his valuable time and effort. I would like to thank him for his continuous support, useful advices and close supervision. His mastery advices, constructive critique and continuous support with valuable comments enabled me to accomplish this work.

I would like to express my deepest thanks to **Prof. Dr. Amina** Hendawy Salem, professor of pediatrics, faculty of Medicine, Cairo University, for giving me her valuable time and effort. I would like to thank her for continuous support, useful advices and close supervision.

Really, I can't find the words to express my deepest thanks and sincere appreciation to **Prof. Dr. Kamal El-Sayed Shoukry**, Professor of Physical therapy, Department of Physical therapy for disturbances and surgery of growth and development, faculty of Physical therapy, Cairo University, for giving me the spot light for the idea of this piece of work.

Special thanks to all professors, lecturers and colleagues in the Department of Physical therapy for disturbances and surgery of growth and development, Faculty of Physical therapy, Cairo University, for their valuable advices and continuous help.

Finally, no words has a mean in front of my parents, my wife, my sisters and my brothers, for their continuous support, patience and encouragement to finish this work.

Shamekh Mohamed El-Shamy 2009

Contents

Chapter		Page
Chapter (I)	: Introduction	1
	Statement of the problem	4
	Purpose of the study	4
	Null hypothesis	5
	Significance of the study	5
	Delimitation	6
	Limitations	6
	Basic assumptions	7
Chapter (II)	: Literature Review	8
	Cerebral palsy	8
	Definition	8
	Prevalence	11
	Etiology	13
	Classifications	16
	Management of cerebral palsy	26
	Hyperbaric oxygen therapy	41
	Motor development	59
	Common universal scales utilized in evaluation of motor development	71

Chapter (III)	: Subjects, Materials and Methods	76
	Subjects	76
	Materials	77
	Methods	79
Chapter (IV)	: Results	114
Chapter (V)	:Discussion	147
Chapter (VI)	:Summary, Conclusion and Recommendations	173
Chapter (VII)	References	176
Appendix		
Arabic Summary	1	

List Of Abbreviations

AFO Ankle Foot Orthosis

ATA Atmospheres Absolute

BOT Bruininks Oseretsky Test

BSID Bayley Scale of Infant's Development

BTX-A Botulinum Toxin Type A

CNS Central Nervous System

CP Cerebral Palsy

DDST Denver Developmental Screening Test

EMG Electromyography

FMQ Fine Motor Quotient

GMFM Gross Motor Functional Measure

GMQ Gross Motor Quotient

HBO2 Hyperbaric Oxygen

HBOT Hyperbaric Oxygen Therapy

NDT Neurodevelopmental Techinque

OT Occupational Therapy

PDMS Peabody Developmental Scale

PO2 Normobaric Hyperoxia

PT Physiotherapy

RBCS Red Blood Cells

SOD Superoxide Dismutase

SPECT Single Photon Emission Computerized Tomography

TENS Transcautanous Electrical Nerve Stimulation

TMQ Total Motor Quotient
TNR Tonic Neck Reflexes

TVR Tonic Vibratory Reflex

WBCS White Blood Cells

List of Figures

No.		Figure	Page
Figure (1)	:	Mechanism of action of HBOT in Neurology	57
Figure (2)	:	Mats, balls, rolls, and wedges	78
Figure (3)	:	Standing frame	78
Figure (4)	:	Hyperbaric oxygen therapy chamber(multi-place chamber)	79
Figure (5)	:	Facilitation of head control	96
Figure (6)	:	Facilitation of rolling	99
Figure (7)	:	Facilitation of trunk control and sitting	101
Figure (8)	:	Approximation for lower limbs	104
Figure (9)	:	Approximation for upper limbs	105
Figure (10)	:	Training of active trunk extension	105
Figure (11)	:	Facilitation of righting and equilibrium reactions	106
Figure (12)	:	Training of protective reactions	107
Figure (13)	:	Stretching exercises for hamstring muscles	108
Figure (14)	:	Stretching exercises for hip adductors	108
Figure (15)	:	Stretching exercises for Achilles tendon	109
Figure (16)	:	Weight bearing exercises for upper limbs	110
Figure (17)	:	Age in years for both control and study groups	115

Figure (18)	:	Sex distribution in control and study groups	116
Figure (19)	:	Pre, post-1 and post-2 treatment mean values of scores of reflexes for the control group	118
Figure (20)	:	Pre, post-1 and post-2 treatment mean values of scores of reflexes for the study group	120
Figure (21)	:	Pre, post-1 and post-2 treatment mean values of scores of reflexes for both control and study groups	122
Figure (22)	:	Pre, post-1 and post-2 treatment mean values of scores of stationary for the control group	124
Figure (23)	:	Pre, post-1 and post-2 treatment mean values of scores of stationary for the study group	126
Figure (24)	:	Pre, post-1 and post-2 treatment mean values of scores of stationary for both control and study groups.	128
Figure (25)	:	Pre, post-1 and post-2 treatment mean values of scores of locomotion for the control group	130
Figure (26)	:	Pre, post-1 and post-2 treatment mean values of scores of locomotion for the study group	132
Figure (27)	:	Pre, post-1 and post-2 treatment mean values of scores of locomotion for both control and study groups	134

	: Pre, post-1 and post-2 treatment mean values of	
Figure (28)	scores of object manipulation for the control	136
	group	
	: Pre, post-1 and post-2 treatment mean values of	
Figure (29)	scores of object manipulation for the study	138
	group	
	: Pre, post-1 and post-2 treatment mean values of	
Figure (30)	scores of object manipulation for both control	140
	and study groups	
	: Pre, post-1 and post-2 treatment mean values of	
Figure (31)	gross motor quotient (GMQ) for the control	142
	group	
	: Pre, post-1 and post-2 treatment mean values of	
Figure (32)	gross motor quotient (GMQ) for the study	144
	group	
	: Pre, post-1 and post-2 treatment mean values of	
Figure (33)	gross motor quotient (GMQ) for both control and	146
	study groups	

List of Tables

No.	Table	Page
Table (1)	: Risk factors and aetiology of cerebral palsy	14
Table (2)	: Age in years for both control and study groups	115
	(A and B)	115
Table (3)	: The frequency distribution of sex in both groups	116
	(A and B)	110
Table (4)	: Pre, post-1 and post-2 treatment mean values of	117
Table (4)	scores of reflexes for the control group	11/
Table (5)	: Pre, post-1 and post-2 treatment mean values of	119
Table (5)	scores of reflexes for the study group	119
	: Pre, post-1 and post-2 treatment mean values of	
Table (6)	scores of reflexes for both control and study	121
	groups	
Table (7)	: Pre, post-1 and post-2 treatment mean values of	122
Table (7)	scores of stationary for the control group	123
Table (8)	: Pre, post-1 and post-2 treatment mean values of	125
Table (8)	scores of stationary for the study group	123
	: Pre, post-1 and post-2 treatment mean values of	
Table (9)	scores of stationary for both control and study	127
	groups	
Table (10)	: Pre, post-1 and post-2 treatment mean values of	129
1 aute (10)	scores of locomotion for the control group	14)

Table (11)	: Pre, post-1 and post-2 treatment mean values of	31
	scores of locomotion for the study group	
	: Pre, post-1 and post-2 treatment mean values of	
Table (12)	scores of locomotion for both control and study 13	3
	groups	
	: Pre, post-1 and post-2 treatment mean values of	
Table (13)	scores of object manipulation for the control 13	35
	group	
	: Pre, post-1 and post-2 treatment mean values of	
Table (14)	scores of object manipulation for the study 13	37
	group	
	: Pre, post-1 and post-2 treatment mean values of	
Table (15)	scores of object manipulation for both control and 13	39
	study groups	
	: Pre, post-1 and post-2 treatment mean values of	
Table (16)	gross motor quotient (GMQ) for the control 14	1
	group	
	: Pre, post-1 and post-2 treatment mean values of	
Table (17)	gross motor quotient (GMQ) for the study 14	13
	group	
	: Pre, post-1 and post-2 treatment mean values of	
Table (18)	gross motor quotient (GMQ) for both control and 14	15
\ -/	study groups	