

Energy-Efficient Building Envelope Design Using Computer-Based Measurements.

تصميم غلاف المبنى المرشد للطاقة باستخدام قياسات الحاسب الآلي

PhD Degree Thesis Presented By:

Architect / Khaled Mohamed Farid Mohamed Mohamed El-Deeb

Assistant Lecturer in the Department of Architecture Faculty of Fine Arts – Alexandria University

Under Supervision of :

Prof. Dr. Hoda Abd El-Kader Azzam

Professor of Architecture Faculty of Fine Arts – Alexandria University

Assistant Prof. Dr. Abbas Mohamed El-Zafarany

Assistant Professor of Architecture
Faculty of Regional Planning – Cairo University

Energy-Efficient Building Envelope Design Using Computer-Based Measurements.

تصميم غلاف المبنى المرشد للطاقة باستخدام قياسات الحاسب الآلي

PhD Degree Thesis Presented By:

Architect / Khaled Mohamed Farid Mohamed Mohamed El-Deeb

Assistant Lecturer in the Department of Architecture Faculty of Fine Arts – Alexandria University

SUPERVISORS:

Prof. Dr. Hoda Abd El-Kader Azzam

Professor of Architecture Faculty of Fine Arts – Alexandria University

Assistant Prof. Dr. Abbas Mohamed El-Zafarany

Assistant Professor of Architecture
Faculty of Regional Planning – Cairo University

Energy-Efficient Building Envelope Design Using Computer-Based Measurements.

تصميم غلاف المبنى المرشد للطاقة باستخدام قياسات الحاسب الآلي

PhD Degree Thesis Presented By:

Architect / Khaled Mohamed Farid Mohamed El-Deeb

Assistant Lecturer in the Department of Architecture Faculty of Fine Arts – Alexandria University

EXAMINATION COMMITTEE

Prof. Dr. Magdi Mohamed Moussa. Professor in the Department of Architecture, Former Dean of Faculty of Fine Arts. Faculty of Fine Arts – Alexandria University(Member and Chairman).
Prof. Dr. Hoda Abd El-Kader Azzam.
Professor in the Department of Architecture,
Faculty of Fine Arts – Alexandria University(Supervisor).
Prof. Dr. Ahmed Ahmed Fekry. Professor in the Department of Architecture, Faculty of Engineering – Cairo University(Member).
Assistant Prof. Dr. Abbas Mohamed El-Zafarany. Assistant Professor of Architecture, Faculty of Regional Planning – Cairo University(Supervisor).

بسم الله الرحمن الرحيم

(و ما أوتيتم من العلم إلا قليلاً)

سورة الإسراء - الآية (85)

EXAMINATION COMMITTEE

Prof. Dr. Magdi Mohamed Moussa. Professor in the Department of Architecture, Former Dean of Faculty of Fine Arts. Faculty of Fine Arts – AlexandriaUniversity(Member and Chairman).		
Prof. Dr. Hoda Abd El-Kader Azzam.		
Professor in the Department of Architecture,		
Faculty of Fine Arts – Alexandria University(Supervisor).		
Prof. Dr. Ahmed Ahmed Fekry.		
Professor in the Department of Architecture,		
Faculty of Engineering – Cairo University(Member).		
Assistant Prof. Dr. Abbas Mohamed El-Zafarany. Assistant Professor of Architecture,		
Faculty of Regional Planning – Cairo University(Supervisor).		

ABSTRACT

The research deals with role of using 'building analysis computer software tools' in the building envelope design to reach energy efficiency.

Energy-efficient building envelope systems are discussed. This includes passive heating, passive cooling, and intelligent building envelope systems, in addition to energy generation through the integration of renewable energy systems in the building envelope design.

Building analysis tools are discussed and categorized. These include airflow, natural/artificial lighting and whole building analysis simulation tools. Each tool is discussed showing the inputs, outputs, benefits and the stage where it can be used in design. The relation between analysis tool and CAD tools is also discussed.

In the last part of the research, an application is performed using computer-based measurements and simulations to detect take energy-efficient design decisions for the building envelope in a specified case study,

Finally, a number of conclusions and recommendations are derived.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors:

Prof. Dr. **Hoda Azzam**

for her valuable advices, guidance and continuous support, and for her interest throughout the development of this research.

And

Assistant Prof. Dr. Abbas El -Zafarany

for his valuable advices since the earliest stages of the study, through which discussions with him were always helpful and fruitful.

I would like to express my thanks to Prof.Dr. **Magdi Moussa** and to Prof. Dr. **Ahmed Fekry** for examining this thesis.

I also, express my thanks to professors in the Department of ITACA
Faculty of Architecture "Ludovico Quaroni", Uniroma1 University, Rome, Italy
Prof. Dr. Fabrizio Orlandi Prof. of Architecture Head of Dept. ITACA.
Prof. Dr. Eliana Cangelli Prof. of Architecture, Dept. ITACA.
Dr. Carlo Brizioli Lecturer of Architecture, Dept. ITACA.
For the great assistance, guidance and training during my scholarship in Rome.

And to

Asst. Prof. Dr. **Mohamed Faruk El-Abi**. Faculty of Architecture, Kingdom University, Bahrain Arch. **Mohamed Zaghloul**. Faculty of Fine Arts – Alexandria University For their assistance in various stages of the research.

At last I would like to express my great thanks to my mother, father, sister and brother, who always encouraged me and gave me a lot of moral support

Only To You
Dedicated to my

Mother.

Table of Contents

Introductio	n :	1
Significar	nce of the study:	2
Objective	s of the study:	2
Scope of	f the study:	2
Methodol	ogy [:]	2
Structure	of the study:	2
PART	: Climatic Control Systems	2
PART	I: Computer-Based Building Performance Measurements	2
PART	II: Using Analysis Tools for Building Envelope Design Decisions.	Case
Study		3
PART I: Cli	matic Control Systems	5
Chapter	l : Passive Heating Systems	7
1.1.0	Introduction:	7
1.1.1	Direct-Gain System:	7
1.1.2	Indirect-Gain Systems:	
1.1.3	Isolated Gain System (Sun Spaces):	10
_	II : Passive Cooling Systems	15
1.2.0	Introduction:	
1.2.1	Excluding heat gains :	
1.2.2	Inducing Air Movement :	
1.2.3	Cooling Inlet Air :	
Chapter	III:Energy-Efficient Glazing Systems	
1.3.0	Introduction:	
1.3.1	Thermal Gains for windows :	24
1.3.2	Performance Evaluation of Glazing :	
1.3.3	Types of Energy Efficient Glazing Systems :	
_	IV : Intelligent Building Envelope Systems	
1.4.0	Introduction:	
1.4.1	The Concept of Intelligence	
1.4.2	Intelligent Building Envelope Features	
1.4.3	Building-Integrated Photovoltaics (BIPVs):	
1.4.4	Double Envelope Facades :	
	omputer-Based Building Performance Measurements	
_	I : Airflow Simulation Tools.	
2.1.0	Introduction	
2.1.1	Types of airflow simulation output:	
2.1.2	Software tools used for airflow simulation:	45

Chap	ter II	: Lighting Simulation Tools	62
2.2	.0	Introduction:	62
2.2	.1	Types of lighting simulation output:	62
2.2	.2	Software tools used for lighting simulation:	62
Chap	ter II	I: Whole-Building Analysis Simulation Tools	70
2.3	.0	Introduction:	70
2.3	.1	Types of whole-building simulation output:	70
2.3	.2	Software tools for whole building analysis	70
2.3	.3	Integration of CAD / Analysis tools	77
2.3	.4	Energy Support Tools.	81
2.3	.5	Example for using Ecotect, RetScreen and BestClass tools:	84
PART I	II : U	sing Analysis Tools For Building Envelope Design Decisions	88
3.0	Intr	oduction:	88
3.1	Aim	of the Case Study:	89
3.2	Des	scription of the Case Study :	90
3.3	Me	thod:	90
Stage	e A:	Selection and calibration of the tool	91
3.4	.1	Selection of the Analysis Tool	91
3.4	.2	Calibrating the Analysis Tool	93
Stage	e B :	Performing the Simulation	95
3.5	.1	Modeling the Case Study Analysis Room:	95
3.5	.2	Shading Analysis.	97
3.5	.3	Natural Lighting Simulation.	100
3.5	.4	Artificial Lighting Simulation.	102
3.5	.5	Energy Consumption Calculation	105
3.6	Cas	se Study Results	109
3.7	Ana	alyzing results:	110
CONCL	USIC	DNS	120
SUMMA	ARY.		125
APPEN	DIX	Lighting Simulation Results	129
DEEED		F.S.	110

Table of Figures: Content No. Source. Introduction Role of Computer-based measurements in envelope design. Researcher. PART I Chapter I 3 4 5 6 7 8 Barra system S75 9 10 11 12 Modified greenhouse Researcher. 13 14 Sunspace connecting wall alternatives...... Researcher. Chapter II 15 Passive cooling systems...... Researcher. 16 New and Renewable Energy Authority...... Researcher. 17 Sino-Italiano Ecological and Energy-efficient Building....... Researcher. 18 Double wall system, EERE building...... Researcher. 19 20 21 Load-bearng straw bales...... S70. 22 23 Infill straw bales...... S71. 24 25 26 The effect of vertical louvers on wind-driven ventilation...... R3, p 96. 27 Building Research Establishment, UK...... S50. Inland Revenue Centre, UK...... S134. 28 29 30 31 32

33	Acros Fukoka Building, Japan	S74.
34	The underground water channel	R14, p109.
	5	, ,
Chapte	r III	
35	Solar Spectrum	S65.
36	Heat flow through windows	
37	Glazing Systems according to selectivity	
38	Microsoft- Egypt Headquarters	
39	Dark fritted glass	S51.
40	Layered Glazing	S61.
41	Switchable glazing	Researcher.
42	Electrochromic Glazing	
43	Angular selective glazing systems	
44	Fixed concave mirror louvered	
45	Laser-cut acrylic panels	
46	LCP applications	
47	Prismatic panel diagram	
48	Prismatic light redirection	
49	Prismatic panel visual effect	
50	Prismatic panel skylights	
51	SUVA Building - Vertical section	
52	SUVA Building	•
53	SUVA Building	R4, p137-142
Chapte	r IV	
54	Artificial intelligence	Pesearcher
55	Learning from human body	
56	PV skylight entry	
57	PVs for daylighting	
58	Solar Test and Research Centre, Arizona	
59	Building Research Establishment	
61	Benefits of double skin facades	
62	Systems of double-skin	
63	Buffer system	
64	The Occidental Chemical Building	
65	The Helicon Building	
66	Extract-air system	
67	Twin-Face Façade	
68	Twin-façade System summer performance	
69	The Debis Building, Berlin	
PART I		Charter I
70	Steps of airflow simulation	
71	Simulation of airflow streamlines	
72 72	Simulation of airflow temperatures	
73	Simulation of airflow in an office space	S46.
74	Airflow Simulation of an atrium using FLOVENT	L1.
75 70	Airflow Simulation of an atrium using PHOENICS	
76 77	Building model in PHOENICS	
77	Three Analysis grids by PHOENICS	S42.

78	Airspeed analysis by PHOENICS	S42.
79	airspeed analysis on vertical section plane	
80	Samples of MicroFlo simulation	
81	External CFD simulation around a building using MicroFlo	S37.
82	Airspeed Vectors using AIRPAK	
83	Extension of Pittsburg Project Organisation solar tower	A2.
84	Temperature contours using AIRPAK	
85	Section view of the proposed extension	A2.
86	Velocity vectors around Pittsburg	
87	Bioclimatic Residential Building, Italy	L2
88	Architectural design concept of cooling system	L2.
89	Central atrium airflow simulation using FLUENT	L2.
90	Central atrium airflow simulation	L2.
91	Airflow simulation Plan of the project	L2.
Chapte	r II	
92	Simulation of daylight factor on work plane using FlucsDL	
93	A combined Ecotect-Daysim simulation	S22.
94	Museum and office Building in Seattle simulation	R6.
95	Daylight 1-2-3 input and output screen	
96	Photorealistic and illuminance simulations using DIALUX	S10.
97	Output image using RADIANCE IES	S40.
98	ADELINE simple input	S49.
99	ADELINE Illuminance Contour and false color images	S49.
_		
Chapte		
100	DesignBuilder simulation tool	
101	VisualDOE graphic interface	
102	VisualDOE output	
103	Ecotect shading analysis	
104	Ecotect-WinAir airflow simulation	
105	Ecotect-Radiance illuminance levels simulation	
106	Ecotect-Radiance False color image	
107	Ecotect thermal analysis	
108	Ecotect Artificial lighting	
109	The concept of Building Information Modeling	
110	The Autodesk Revit Architecture software	
111	Green Building Studio tool	
112	RETScreen Software tool	
113	BestClass software interface	
114	Energy-Efficient Residential Compound Design Project	
115	Material properties for the selected wall composition	
116	BestClass Results	Researcher.
David III		
Part III	Effect of increasing Window Well Datio	Doggarahar
117 118	Effect of increasing Window-Wall Ratio	
118	Case Study Analysis Room Location	
119	Tested window-wall ratios	
120	Calibration test room Calibration tools for sun patch and shading pattern	
121	Calibration test room, illumination	
	•	
123	Calibrating tools for artificial lighting	Researcher

TABLE O	r CONTENTS	
124	Analysis study room properties	Researcher.
125	Room Dimensions, orientation	
126	Indication of artificial lights	Researcher.
127	Wall material assignment	
128	Monthly Shadow range on the building façade	Researcher.
129	Direct solar incidence on the building façade	
130	Annual cloud cover	
131	Tested cases for window-wall ratio alternatives	Researcher.
132	Process of minimizing the number of simulation cases	Researcher.
133	Process of detecting the need for artificial lighting	Researcher.
134	Level 01 – Natural lighting. Illuminance levels	
135	Level 01 – Artificial lighting schedules	
136	Energy simulation output sample	
137	Annual energy consumption Levels 01-05	Researcher.
138	Annual energy consumption Levels 06-09	
139	Energy-efficient window-wall ratio elevation	Researcher.
140	EE WWR 20% Level 01	
141	Window-wall ratios for level 01	Researcher.
142	Window-wall ratios for levels 02, 03, 04	Researcher.
143	Window-wall ratios for levels 05, 06, 07	
144	Window-wall ratios for levels 08, 09	
145	Maximum annual shadow range from 08:00 to 16:00	
146	Artificial lighting for WWR 20% in Level 01, Level 02	
147	Solar reflections into level 01 in September	
148	Comparison if illuminance levels on the ceiling of L01, L02	
149	Comparison of energy consumption of the sum of all levels	
150	Alternatives for integration of PV panels in envelope design.	Researcher.
CONCI	HEIONE	
	USIONS Window well retice for levels 01.02	Doogorobor
151 152	Window-wall ratios for levels 01,02	
153 APPEN	Alternatives for integration of PV panels in envelope design.	Researcher.
154	Level 01 – Natural lighting. Illuminance levels	Docoarchor
155	Level 01 – Natural lighting, literal lighting schedules	
156	Level 02 – Natural lighting. Illuminance levels	
157	Level 02 – Artificial lighting schedules	
158	Level 03 – Natural lighting. Illuminance levels	
159	Level 03 – Artificial lighting schedules	
160	Level 04 – Natural lighting. Illuminance levels	
161	Level 04 – Artificial lighting schedules	
162	Level 05 – Natural lighting. Illuminance levels	
163	Level 05 – Artificial lighting schedules	
164	Level 06 – Natural lighting. Illuminance levels	
165	Level 06 – Artificial lighting schedules	
166	Level 07 – Natural lighting. Illuminance levels	
167	Level 07 – Artificial lighting schedules	
168	Level 08 – Natural lighting. Illuminance levels	Researcher
169	Level 08 – Artificial lighting schedules	Researcher
170	Level 09 – Natural lighting. Illuminance levels	Researcher
171	Level 09 – Artificial lighting schedules	
	5 5	

List of Tables:

No.	Content.	Source.
1	Diff. in heat gain/losses bet. Sunspace/building relationship	. Researcher.
2	Camparable U-values for different glazing types	S3.
3	Glazing properties evaluation	S3, 66,67,68.
4	Emmisivity values for low-e coatings	S3.
5	Glazing types anfd properties	S3, 64.
6	VisualDOE Energy-efficiency measures	L3.
7	Calibration of Ecotect-Radiance tools	Researcher.
8	Calibration of Ecotect-Radiance tools for artificial lighting	Researcher.
9	Comparison of energy consumption values of tested WWR	Researcher.
10	Energy-efficient window-wall ratio results for each level	Researcher.