SAFETY AND EFFICACY OF SILDOSIN FOR THE TREATMENT OF BENIGN PROSTATIC HYPERPLASIA

Thesis

Submitted for partial fulfillment of Master Degree in Urosurgery Faculty of Medicine – Cairo University

Presented By Ahmed Mansour Abd El kader M.B., B.Ch

Under the supervision of

Prof. Dr. SherifAbd El-Rahman

Professor of Urosurgery Faculty of Medicine

Prof. Dr. MostafaAbd El-Mohsen

Professor of Urosurgery Faculty of Medicine

Ass. Prof. Dr. Ashraf Emran

Assistant Professor of Urosurgery Faculty of Medicine

Faculty of Medicine Cairo University 2016

Acknowledgements

First and foremost, I feel always indebted to Allah, the Most Kind and Most Merciful

I would like to express my deep thanks to **Prof. Dr. SherifAbd El-Rahman**Professor of Urosurgery, Faculty of Medicine, Cairo University, I am deeply indebted to him for support, patience and guidance which given me from his precious time.

I would like to express my sincere appreciation and deep gratitude to **Prof. Dr. MostafaAbd El-Mohsen**, Professor of UrosurgeryFaculty of Medicine, Cairo University for his great help, generous advice, sincere encouragement, continuous support guided in my steps in this work and unlimited assistance.

I would like to express my sincere appreciation and deep gratitude to Ass. Prof. Dr. Ashraf Emran Assistant Professor of Urosurgery Faculty of Medicine, Cairo University for his great help, patience and guidance.

LIST OF CONTENTS

Introduction	1
Aim of Work	4
Anatomy of Prostate	5
Vascular Supply	10
Lymphatic drainage	12
Nerve Supply	13
Physiology and pathophysiology of LUT	15
Mechanisms of voiding	17
Pathophysiology of voiding	18
Pathophysiology of Bladder Outlet Obstruction (BOO)	20
1- Stage of compensation2- Stage of Decompensation	
Bladder response to BOO	22
Benign prostatic hyperplasia	24
Alpha1-adrenergic receptor blockers	25
Historical background	27
The uroselectivity of silodosin	28
The pharmacokinetics of Silodosin	29
PATIENTS & METHODS	
Study design	31
Study population	31
Methodology Study	32
Clinical examination including	34
Statistical analysis	37
RESULTS	49
Efficacy Results	40
Quality of life related to urinary symptoms (IPSS-QoL)	46
The maximum flow rate (Qmax)	51
The post-void residual urine (PVR	57

Safety results	62
The supine diastolic blood pressure (D.BP)	67
Heart Rate (HR)	72
Treatment-emergent adverse events (TEAEs	77
Headache	79
Postural hypotension	80
DISCUSSION	92
SUMMARY	102
CONCLUSION	104
REFERENCES	105
ARARIC SUMMARY	

LIST OF TABLES

Table (1):	Summary of studies for uroselectivity of α1-
	adrenergic receptor antagonists
Table(2):	Rangesof agesinthe threegroups
Table(3):	Agedistributioninthe threegroups
Table(4):	Summary of the baseline characteristics of the total
	patientsscreenedinthe three studygroups
Table(5):	TheoverallfourvisitsrecordsofIPSSamongpatientsin
	thethreegroupsA,BandC
Table(6):	ComparisonofIPSSchangesfrombaselinetoendpointof
	the studybetweenthegroupsAandC(basedonadjusted
	means)
Table (7):	ComparisonofIPSSchangesfrombaselinetoendpointof
	the studybetweenthegroupsBandC(basedonadjusted
	means)
Table(8):	ComparisonofIPSSchangesfrombaselinetoendpointof
	the studybetweenthegroupsAandB(basedonadjusted
	means)
Table(9):	ResponderratesaccordingtototalIPSSinthethreestudy
	groupsA,B andC
Table(10):	The overall four visits records of IPSS-QoLamong
	patientsof the threeVgroupsA,B andC
Table(11):	ComparisonofIPSS-QoLscorechangesfrombaselineto
	endpoint ofthestudybetweenthetwogroups AandC
	(basedonadjustedmeans)
Table(12):	ComparisonofIPSS-QoLscorechangesfrombaselineto
	endpoint ofthestudybetween thetwogroups Band C
	(basedonadjustedmeans)
Table(13):	ComparisonofIPSS-QoLscorechangesfrombaselineto
	endpoint ofthestudybetweenthetwogroups AandB
	(basedonadjustedmeans)
Table(14):	TheoverallfourvisitsmeasurementsofQmaxamong
	patients of the three groups of the study A, B and C
Table(15):	ComparisonofQmaxchangesfrombaselinetoendpoint
	of thestudybetweenthetwogroupsAandC(basedon
	adjustedmeans)

Table (16):	ComparisonofQmaxchangesfrombaselinetoendpoint	
	of thestudybetweenthetwogroupsBandC(basedon	
	adjustedmeans)	
Table(17):	Comparison of Q max changes from baseline to endpoint	4
	of thestudybetweenthetwogroupsAandB(basedon	
	adjustedmeans)	
Table(18):	ResponderratesaccordingtoQmaxinthethreestudy	
	groupsA,B andC	
Table(19):	ResponderratesaccordingtoQmaxinthethreestudy	
	groupsA,B andC	
Table(20):	TheoverallfourvisitsassessmentofPVRamongpatients	
	of thethree groups of the study	
Table(21):	ComparisonofPVRchangesfrom	(
	baselinetoendpointof the study between the two	
	groups A and C (based on adjustedmeans)	
Table(22):	ComparisonofPVRchangesfrom	
	baselinetoendpointof the study between the two	
	groups B and C (based on adjustedmeans)	
Table(23):	ComparisonofPVRchangesfrom	
	baselinetoendpointof the study between the two	
	groups A and B (based on adjustedmeans)	
Table(24):	TheoverallfourvisitsmeasurementsofSystolicblood	
	pressure(S.BP)amongpatientsofthethreegroupsofthe	
	study	
Table(25):	Comparison of systolic blood pressure changes	
	from baseline to endpoint of the study between the	
	two groups Aand C(based on adjusted means)	
Table(26):	Comparison of systolic blood pressure changes	
	from baseline to endpoint of the study between the	
	two groups Band C(based on adjusted means)	
Table(27):	Comparison of systolic blood pressure change	
	from baseline to endpoint of the study between the	
	two groups Aand B(based on adjusted means)	
Table(28):	TheoverallfourvisitsmeasurementsofDiastolicblood	(
	pressure(D.BP)amongpatientsofthethreegroupsofthe	
	study	

Table(29):	Comparison of Diastolic blood pressure change	70
14610(2))	from baseline to endpoint of the study between the	70
	•	
	two groups Aand C(based on adjusted means)	
Table (30):	Comparison of Diastolic blood pressure change from	71
	baselinetoendpointofthestudy betweenthe	
	twogroupsB andC(basedonadjustedmeans)	
Table(31):	Comparison of Diastolic blood pressure change	72
	from baseline to endpoint of the study between the	
	two groups Aand B(based on adjusted means)	
Table(32):	Theoverallfourvisitsmeasurementsofheartrate(HR)	74
	among patients of the three groups of the study	
Table(33):	Comparison of Heart rate change from baseline to	75
	endpoint ofthestudybetweenthetwogroups AandC	
	(basedonadjustedmeans)	
Table(34):	Comparison of Heart rate change from baseline to	76
	endpoint ofthestudybetween thetwogroups Band C	
	(basedonadjustedmeans)	

LIST OF FIGURES

Fig.(1):	Sagittal section through the prostatic and	
	membranous urethra, demonstrating the midline	
	relations of the pelvic structures	5
Fig.(2):	Posterior wall of the male urethra	6
Fig.(3):	Retrograde urethrogram of the male urethra	
	demonstrating urethral anatomy. 1, prostatic urethra;	
	2, verumontanum, into which enter the ejaculatory	
	ducts; 3, membranous urethra, note physiologic	
	narrowing of urethral luminal diameter due to	
	external striated sphincter; 4, bulbar urethra; 5,	
	pendulous urethra	7
Fig.(4):	Zonal anatomy of the prostate as described by J.E.	
	McNeal (Normal histology of the prostate. Am J	
	SurgPathol 1988;12:619–33). The transition zone	
	surrounds the urethra proximal to the ejaculatory	
	ducts. The central zone surrounds the ejaculatory	
	ducts and projects under the bladder base. The	
	peripheral zone constitutes the bulk of the apical,	
	posterior, and lateral aspects of the prostate. The	
	anterior fibromuscularstroma extends from the	
	bladder neck to the striated urethral sphincter	8
Fig.(5):	Transrectal ultrasound of the prostate demonstrating	
	the 1, peripheral zone and 2, transition zone	9
Fig.(6):	Arterial supply of the prostate (Adapted from Flocks	
	RH. The arterial distribution within the prostate	
	gland: its role in transurethral prostatic resection	11

Fig.(7):	Pelvic venous plexus. A, Trifurcation of the dorsal	
	vein of the penis, viewed from the retropubic space.	
	The relationship of the venous branches to the	
	puboprostatic ligaments is shown. B, Lateral view of	
	the pelvic venous plexus after removal of the lateral	
	pelvic fascia. Normally these structures are difficult	
	to see because they are embedded in pelvic fascia	12
Fig.(8):	Lymphatic drainage of the male pelvis, perineum,	
	and external genitalia.	13
Fig.(9):	Innervation to lower urinary tract, prostate, and	
	external sphincter (efferent and afferent pathways).	
	Stars mean possible lesions for lower urinary tract	
	dysfunction	16
Fig.(10):	The balance between sympathetic and	
	parasympathetic nerves and the post-synaptic	
	receptors involved during voiding and urinary	
	storage	16
Fig.(11):	The International Prostate Symptom Score (IPSS)	33

LIST OF CHARTS

Chart (1) IPSS improvement rate in the three groups	41
Chart (2) IPSS-QoL improvement rate in the three groups	47
Chart (3) Qmax improvement rate in the three groups	52
Chart (4) PVR improvement rate in the three groups	58
Chart (5) S.BP decrease rate in the three groups.	63
Chart (6) D.BP decrease rate in the three groups	68
Chart (7) HR increase rate in the three groups	73.

LIST OF ABBREVIATIONS

ATP: Adenosine triphosphate

BOO: Bladder outlet obstruction BPH: Benign prostatic

hyperplasia BWT: Bladder wall thickness

C/S: Culture and sensitivity

CBC: Complete blood count

CI: Confidence interval

ED: Erectile dysfunction

EjD: Ejaculatory dysfunction

DRE: Digital rectal examination

ECG: Electrocardiogram

IBM: International business machine

IPPS: International Prostate Symptom Score

IPSS-QoL: Quality of life related to urinary symptoms

LUTs: Lower urinary tract symptoms

LUTs/BPH: Lower urinary tract symptoms associated with

benign prostatic hyperplasia

MSAM-7: Multinational Survey of the Aging Male-7

NANC: Non-adrenergic non-cholinergic

NO: Nitric oxide

PSA: Prostatic specific antigen

PVR: Post void residue

Qmax: Maximum urinary flow rate

QoL: Quality of life

SMCs: Smooth muscle cells

SPSS: Statistical package for social science

St.D: Standard deviation

TEAEs: Treatment-emergent adverse events

TOWC: Trial without catheter TRUS: Trans rectal ultra-

sound U/S: Ultra-sound

UT: Urinary tract

Abstract

Background: $\alpha 1$ adrenergic receptor antagonists are commonly used as the first-line treatments for LUTS associated with BPH. Silodosin is a novel α_1 -adrenergic receptor antagonist whose affinity for the α_{1A} -adrenergic receptor is 162 times higher than that for the α_{1B} -adrenergic receptor, and 55 times higher than that for the α_{1D} -adrenergic receptor, Therefore, silodosin does not increase the incidence of blood pressure-related side effects, which are mainly result from the inhibition of the α_{1B} -adrenergic receptor.

Objective: To test the hypothesis that the efficacy of silodosin(in dose of 8 mg once daily) would not be inferior to tamsulosin (in dose of 0.4 mg once daily) in treating patients with LUTS associated with BPH, with lesser cardiovascular side effects (as judged by the minimal changes of blood pressure and heart rate after treatment).

Design, setting, and participants: A randomized, double-blind, placebo- and active-controlled, parallel-group study assessed men ≥ 50 yrs. of age with LUTS/BPH, InternationalProstate Symptom Score (IPSS) ≥ 13 ,Post Voiding Residue(PVR) ≤ 150 ml and maximum urinary flow rate (Qmax) between4 and 15 ml/s. Following screening, subjects completed a 24-wk silodosin 8 mg once daily, tamsulosin 0.4 mg once daily and placebo.

Measurements: Outcomes were assessed by change from baseline in IPSS, quality of life (QoL), Qmax, PVR, systolic blood pressure (S.BP), diastolic blood pressure (D.BP) and heart rate (HR) to endpoint of the study. Responders to the treatments on the basis of IPSS decrease of $\geq 25\%$ and Qmax increase of $\geq 30\%$ were calculated.

Results: Silodosin and tamsulosin significantly improved IPSS total score in comparison with placebo (p=0.005) and(p=0.007), respectively. Silodosin and tamsulosin significantly improved OoL (p<0.0001)and (p<0.0001),respectively.Silodosinandtamsulosin significantly improved (p<0.0001) and (p<0.0001), respectively. Silodosin and tamsulosin significantly improved PVR (p<0.0001) and(p=0.022), respectively, with highly statistically significant difference between both (p<0.0001). However, regarding systolic blood pressure, a minor but statistically significant change versus placebo was observed with tamsulosin (p=0.026) and for a lesser extent with silodosin but non-significant (p = 0.177). Similarly, diastolic blood pressure had hardly statistically significant change with tamsulosin (p = 0.058), while statistically non-significant changein diastolic blood pressure occurred with silodosin (p=0.387). While both silodosin and tamsulosin did not affect heart rate significantly (p = 0.204) and (p = 0.515), respectively, with statistically significant difference between both of them (p = 0.025). In silodosin group, a retrograde ejaculation was reported in 10 patients from 35 patients were sexually active (28.6%) and only one subject reported headache. While in tamsulosin group, a retrograde ejaculation was reported in 1 patients from 36 patients were sexually active (2.8%), three subjects reported headache and three reported postural hypotention.

Conclusions: Silodosin is not only comparable to tamsulosin in treatment of LUTS/BPH, but also superior numerically, with higher safety profile. However, retrograde ejaculation is considered troublesome for sexually active patients.

Keywords: Silodosin, tamsulosin, benign prostatic hyperplasia, Lower urinary tract symptoms, quality of life, α -1A adrenergic receptors.

INTRODUCTION

Benign Prostatic Hyperplasia (BPH) is a non-malignant enlargement of the prostate caused by cellular hyperplasia of both glandular and stromal elements (*Chapple*, 1992).

Benign prostatic hyperplasia (BPH) is a common progressive disease among men, with an incidence that is age-dependent. Histological BPH, which typically develop after the age of 40 years, ranges in prevalence from >50% at 60 years to as high as 90% by 85 years of age. BPH contribute to, but is not the single cause of, bothersome lower urinary tract symptoms (LUTS) that may affect quality of life. The prevalence of troublesome symptoms increases with age, with symptoms typically occurring in men aged ≥50 years. Approximately 50% of patients with histological BPH report moderate to severe LUTS, consisting of storage and voiding symptoms. Although bothersome LUTS may affect quality of life by altering normal daily activities and sleep patterns, mortality associated with BPH is rare. Although uncommon, serious complications of BPH may occur, including acute urinary retention, renal insufficiency, urinary tract infection, hematuria, bladder stone, and renal failure (*Yoshida et al.*, *2011*).

These complications may be triggered or worsened by inadequate management of BPH. The incidence of acute urinary retention in untreated patients ranges from 0.3%to3.5% per year; the risk of developing other long-term complication is unclear (*O'Leary*, 2003).

The management of patients with BPH includes non-pharmacological, pharmacological, and surgical option, with the choice of therapy typically depending on the presence and severity of symptoms. Watchful waiting is the preferred management strategy for patients with