# Post Stroke Apraxia: Types and Management

Essay

Submitted for Partial Fulfillment of Master Degree in Neurology and Psychiatry

By

**Amr Ali Mohammed Abdel-Aziz Elmarakby** M.B.B.Ch

Supervised By

#### Prof. Dr. Samia Ashour Mohamed Helal

Professor of Neurology and Psychiatry, Faculty of Medicine, Ain Shams University

#### Prof. Dr. Hany Mohamed Amen Aref

Professor of Neurology and Psychiatry, Faculty of Medicine, Ain Shams University

#### Prof. Dr. Salma Hamed Khalil

Professor of Neurology and Psychiatry, Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013



سورة البقرة الآية: ٣٢



All thanks are to God who is the source of ultimate support and perfection.

I feel honored to express my deep appreciation to **Prof.** Dr. Samia Ashour Mohamed Helal, Professor of neurology and psychiatry, Faculty of Medicine, Ain Shams University, for her kind encouragement and wise supervision that allowed completion of this work.

I am grateful to **Prof. Dr. Hany Mohamed Amen Aref.** Professor of neurology and psychiatry, Faculty of Medicine, Ain Shams University, who had been very patient and supportive throughout all stages of this work.

I am also grateful to **Prof. Dr. Salma Hamed Khalil.** Assistant Professor of neurology and psychiatry, Faculty of Medicine, Ain Shams University, for much appreciated help during the study.

Last but not least, I will be grateful to my family for their continuous support and care.

Amr Ali Elmarakby

## **Contents**

| Subjects                                | Page |
|-----------------------------------------|------|
| List of Abbreviations                   | I    |
| List of figures                         | IV   |
| • List of tables                        | V    |
| Introduction and Aim of the work        | 1    |
| • Review of literature                  |      |
| • Chapter (1):                          |      |
| * Anatomy and Neurochemistry of Apraxia | 6    |
| • Chapter (2):                          |      |
| * Apraxia                               | 14   |
| Definition                              | 15   |
| Occurrence and prevalence               | 16   |
| Cause of apraxia                        | 17   |
| Localization of apraxia                 | 20   |
| Pathogenesis of apraxia                 | 26   |
| • Chapter (3):                          |      |
| * Apraxia and Stroke                    | 29   |
| Relationship between Apraxia and Stroke | 29   |
| Lesion correlates of apraxia            | 30   |
| • Chapter (4):                          |      |
| * Classification of apraxia             | 35   |
| Types of apraxia                        | 41   |
| . Ideomotor apraxia                     | 42   |
| . Ideational apraxia (IA)               | 51   |
| . Limb-kinetic apraxia                  | 55   |
| . Apraxia of speech                     | 57   |
| . Dissociation apraxia                  | 59   |

| . Conduction apraxia                           | 62  |
|------------------------------------------------|-----|
| . Apraxia of gait                              | 63  |
| . Oral (buccofacial) apraxia                   | 66  |
| . Apraxia of lid opening                       | 67  |
| . Ocular motor apraxia                         | 69  |
| . Callosal apraxia                             | 70  |
| . Constructional apraxia                       | 72  |
| . Dressing apraxia                             | 73  |
| . Optic ataxia                                 | 74  |
| • Chapter (5):                                 |     |
| * Diagnosis of apraxia                         | 76  |
| Clinical presentation of apraxia               | 77  |
| Examination of apraxia                         | 84  |
| Testing for apraxia                            | 94  |
| Investigations for apraxia                     | 106 |
| • Chapter (6):                                 |     |
| * Differential diagnosis                       | 116 |
| • Chapter (7):                                 |     |
| * Management of apraxia                        | 121 |
| Treatment strategies for patients with apraxia | 125 |
| Prognosis of apraxia                           | 162 |
| Recovery of apraxia                            | 163 |
| • Summery                                      | 165 |
| • Discussion                                   | 169 |
| • Conclusion                                   | 175 |
| Recommendations                                | 178 |
| • References                                   | 180 |
| • Arabic summary                               |     |

## **List of Abbreviations**

|         |   | A14                                           |
|---------|---|-----------------------------------------------|
| AAC     | : | Alternative and/or augmentative               |
|         |   | communication                                 |
| ACA     | : | Anterior Cerebral Artery                      |
| ACS     | : | Activity Card Sort                            |
| ADLs    | : | Activities of daily living                    |
| ALO     | : | Apraxia of lid opening                        |
| AMERIND | : | American Indian Hand Talk                     |
| ANOVA   | : | Analysis of variance                          |
| AOS     | : | Apraxia of Speech                             |
| CAS     | : | Childhood Apraxia of Speech                   |
| CBD     | : | Corticobasal ganglionic degeneration          |
| CNS     | : | Central Nervous System                        |
| COMA    | : | Congenital ocular motor apraxia               |
| COPM    | : | Canadian occupational performance measure     |
| CSF     | : | Cerebrospinal fluid                           |
| CT      | : | Computerized Tomography                       |
| CTA     | : | Computed tomography angiography               |
| CVA     | : | Cerebrovascular Accident                      |
| ECG     | : | Electrocardiography                           |
| EEG     | : | Electroencephalography                        |
| EFNS    | : | European Federation of Neurological Societies |
|         |   |                                               |
|         |   |                                               |

# List of Abbreviations (Cont.)

| EMG  | : | Electromyography                      |
|------|---|---------------------------------------|
| EPG  | : | Electroplatography                    |
| FDA  | : | Food and Drug Administration          |
| fMRI | : | Functional magnetic resonance imaging |
| IA   | : | Ideational Apraxia                    |
| ICA  | : | Internal Carotid Artery               |
| ICH  | : | Intracerebral Hemorrhage              |
| IMA  | : | Ideomotor Apraxia                     |
| LAT  | : | limb apraxia test                     |
| LHD  | : | Left hemisphere brain damage          |
| MCA  | : | Middle Cerebral Artery                |
| MIT  | : | Melodic intonation therapy            |
| MOT  | : | Multiple object tasks                 |
| MRA  | : | Magnetic resonance angiography        |
| MRI  | : | Magnetic Resonance Image              |
| NPH  | : | Normal pressure hydrocephalus         |
| OA   | : | Optic Apraxia                         |
| OMA  | : | Ocular Motor Apraxia                  |
| OKN  | : | Optokinetic nystagmus                 |
| ORLA | : | Oral reading for language in aphasia  |
| OT   | : | Occupational therapy                  |
| PCA  | : | Posterior Cerebral Artery             |

# List of Abbreviations (Cont.)

| PEG    | : | Percutaneous Endoscopic Gastrostomy        |
|--------|---|--------------------------------------------|
| PET    | : | Positron emission tomography               |
| PICA   | : | Porch index of communicative ability       |
| PPC    | : | Posterior Parietal Cortex                  |
| PROMPT | : | Prompts for Restructuring Oral Muscular    |
|        |   | Phonetic Targets                           |
| PSP    | : | Progressive Supranuclear Palsy             |
| PT     | : | Physical Therapy                           |
| RAS    | : | Rhythmic auditory stimulation              |
| RCT    | : | Randomized clinical trials                 |
| RHD    | : | Right hemisphere brain damage              |
| SAH    | : | Subarachnoid Haemorrhage                   |
| SMA    | : | Supplementary Motor Area                   |
| SPECT  | : | Single-photon emission computed tomography |
| TBL    | : | Team-Based Learning                        |
| ТВІ    | : | Traumatic Brain Injury                     |
| TIA    | : | Transient Ischemic Attack                  |
| VOR    | : | Vestibulo-Ocular Reflex                    |
| wно    | : | World Health Organization                  |
|        | 1 |                                            |

## **List of Figures**

| Fig. No.   | Title                                                           | Page |
|------------|-----------------------------------------------------------------|------|
| Figure (1) | Topography of human motor cortex                                | 6    |
| Figure (2) | Motor areas in the human cortex                                 | 8    |
| Figure (3) | Anatomy of apraxia                                              | 9    |
| Figure (4) | Postcentral gyrus of the human brain                            | 10   |
| Figure (5) | A cognitive neuropsychological model of limb praxis and apraxia | 12   |
| Figure (6) | Apraxia of eye lid opening                                      | 68   |

## **List of Tables**

| Tab. No.  | Title                                    | Page |
|-----------|------------------------------------------|------|
| Table (1) | The effects of the site of the lesion on | 26   |
|           | apraxia                                  |      |
| Table (2) | Characteristics of stroke patient with   | 34   |
|           | apraxia                                  |      |
| Table (3) | Types of apraxia                         | 41   |
| Table (4) | Etiology of apraxia of speech 107        | 59   |
|           | cases                                    |      |
| Table (5) | Error types associated with each of      | 75   |
|           | apraxic syndromes                        |      |
| Table (6) | Differentiation between AOS and          | 118  |
|           | dysarthria                               |      |
| Table (7) | Differentiation between AOS and          | 120  |
|           | aphasia                                  |      |

#### Introduction

Knowledge of stroke and the process of recovery after stroke have developed enormously in the late 20th century and early 21st century. It was not until the year 1620 that Johan Wepfer, by studying the brain of a pig, came up with the theory that stroke was caused by an interruption of the flow of blood to the brain. This was an important breakthrough, but once the cause of strokes was known, the question became how to treat patients with stroke (*Gallichio*, 2004).

For most of the last century, people were actually discouraged from being active after a stroke. Around the 1950s, this attitude changed, and health professionals began prescription of therapeutic exercises for stroke patient with good results. Still, a good outcome was considered to be achieving a level of independence in which patients are able to transfer from the bed to the wheelchair without assistance. This was still was a fairly bleak outlook, but the situation was improving (*Gallichio*, 2004).

In the early 1950s, Twitchell began studying the pattern of recovery in stroke patients. He reported on 121 patients he had observed. He found that by four weeks, if there is some recovery of hand function, there is a 70% chance of making a full or good recovery. He reported that most recovery happens in the first three months, and only minor recovery occurs after six months. More recent research has demonstrated that significant improvement can be made years after the stroke (*Watkins et al., 2002*).

Apraxia is one of the most important and least understood major behavioral neurology syndromes. It is one of the best localizing signs of the mental status examination and also predicts disability in patients with stroke or dementia (unlike aphasia). Patients with apraxia cannot use tools; therefore, they are unlikely to perform activities of daily living well. Patients with aphasia, without coexisting apraxia, can live independently, take the bus or subway, and lead a relatively normal life; a patient with significant limb apraxia is likely to remain dependent (*Heilman & Rothi 1993*).

Apraxia is not a disease but a syndrome; consequently, it has no attributable morbidity or mortality (*Aboitiz*, 2003).

Dyspraxia is Impairment in new learning of motor patterns and sequences i.e. developmental (related to pediatrics) (*Cermak*, 1985).

Apraxia is a disorder of learned movement i.e. previously able and now this ability is absent (related to acquired brain injury) (*Grieve and Gnanasekaran*, 2008).

Apraxia is a complex higher order cognitive-motor deficit (*Leiguarda & Marsden*, 2000).

Apraxia is an "inability to perform skilled sequential purposeful movement" (*Banich*, 2004).

Apraxia is a cognitive motor disorder that involves the loss or impaired ability to programme motor systems to perform purposeful, skilled movements" (*Zoltan*, 2007).

The root word of apraxia is praxis, Greek for an act, work, or deed. It is preceded by a privative a, meaning without (*Geschwind*, 1975).

Apraxia is due to lesion in the left hemisphere and the left parietal lobe due to impact of language (*Stein et al.*, 2009).

Apraxia is not just the Left Parietal Lobe affection it can be:

Bilateral distribution (Hanna-Pladdy et al., 2001).

Occipital and temporal lobe (Makuuchi et al., 2005).

Left frontal lobe (Haaland et al., 2000).

Basal Ganglia (Kompoliti and Verhagen 2010).

80% of patients with apraxia are also aphasic there is Close relationship between apraxia and aphasia well researched the Exact impact of each on other remains poorly understood and there is a Clear evidence one can exist without the other (*Papagno et al.*, 1993).

Recovery of apraxia should not be goal for rehabilitation; treatment involves teaching compensatory technique use for impairments but does not cure apraxia, and will not improve underlying impairments, the aims to enable more independent function despite presence of apraxia, and Minimize extent to which impairment influences performance of daily life (Buxbaum et al., 2008).

Strategy training is a Focus on teaching ways to compensate for impairment, Compensation can be internal or

#### Introduction and Aim of the work 🗷

external, Incorporates error less learning through practice & repetition, The individual is guided through the tasks but is not allowed to make errors, When repeating and practicing the task only the correct sequence of actions will be learnt to successfully completed the task (*Van Heugten et al.*, 1998).

## Aim of the work

The aim of the present study is to:

- 1. Highlight the clinical impaction of apraxic manifestations in post stroke patient
- 2. Discuss the role of rehabilitation in improving the quality of life those patients.