

Ain Shams University Faculty of Engineering Department of Civil Engineering

TOWARDS PRODUCING HIGH STRENGTH MASONRY CONCRETE HOLLOW BLOCKS USING LOCALLY AVAILABLE MATERIALS AND FACILITIES

By

Ashraf Edward Asaad Younan

B.Sc. Civil Engineering

A Thesis Submitted in Partial Fulfillment for Requirements of the Degree of Master of Science in Structural Engineering

Supervisors

Dr. Hany Mohamed Elshafie

Associate professor Structural Engineering Department Faculty of Engineering - Ain Shams University Dr. Mona Mostafa Abdel Wahab

Associate professor Structural Engineering Department Faculty of Engineering - Ain Shams University

To my parents, my wife and my daughters

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in

the partial fulfillment of the requirements for the degree of Master of

Science in Civil Engineering.

The work included in this thesis was carried out by the author at

the Properties and Testing of Materials Lab of the faculty of

Engineering, Ain Shams University.

No part of this Thesis has been submitted for a degree or a

qualification at any other university or institute.

Date : / /

Name: Ashraf Edward Asaad

Signature: Ashraf Asaad

ACKNOWLEDGMENT

I would like to express my deep thanks Dr. Hany El-Shafie and for his sincere supervision, support, guidance and invaluable advice he generously offered during this work.

I also acknowledge my sincere gratitude to Dr. Mona Mostafa for her continuous encouragement, suggestion and inspiration during the research.

Special thanks are due to the members of Properties and Testing of Materials Laboratory at the Faculty of Engineering - Ain Shams University for the helping of use its facilities and equipment.

Finally, I would like to express my gratefulness to my family for their support and continuous encouragement. Special thanks are due to my wife for her continuous encouragement, help, and patience.

Ain Shams University Faculty of Engineering

Department of Structural Engineering

Abstract of M.SC. thesis submitted by:

Eng. Ashraf Edward Asaad Younan

Title of thesis:

"TOWARDS PRODUCING HIGH STRENGTH MASONRY CONCRETE HOLLOW BLOCKS USING LOCALLY AVAILABLE MATERIALS AND FACILITIES"

Supervisors:

Dr. Hany Mohamed Elshafie

Dr. Mona Mostafa Abdel Wahab

ABSTRACT

There is an increasing demand to produce high strength concrete hollow blocks masonry to fulfill the need to build multistory masonry buildings using thin walls with limited amount of grout. In spite of the availability of high performance block making machines, the current local production of the concrete masonry blocks lacks the availability of high strength masonry concrete blocks. This may be due to the shortage of experience in specifying the right mix proportions and types of concrete materials and admixtures to be used.

One of the challenges in the proposed research is the need to use real block making machine in all trials since the degree of compaction provided by such machines cannot be reproduced in the laboratory. Therefore, the current research has been initiated with a focus on producing high strength masonry concrete hollow blocks using real block making machine.

The main objective of the current research is to produce high strength concrete masonry hollow blocks and to establish the relationship between the masonry compressive strength and unit compressive strength.

The results of this study showed that high strength concrete hollow block can be achieved using the available local materials and ordinary curing methods.

Keywords: Load-bearing masonry, high strength, concrete hollow blocks, concrete block prism, compressive strength, tensile strength, modulus of elasticity, mortar, grout, density, absorption, aggregate, superplasticizer, silica fume.

TABLE OF CONTENTS

		Page
CHA	PTER 1 LITERATURE REVIEW	
1.1	General	1
1.2	Background	1
1.3	High Performance Concrete Masonry	3
	1.3.1 High Strength Concrete	3
	1.3.2 High Performance Concrete	4
	1.3.3 Classification of Concrete Masonry Blocks	13
1.4	High Strength Concrete Mix Design	14
	1.4.1 General	14
	1.4.2 Materials	16
	1.4.2.1 Cement	16
	1.4.2.2 Aggregates	17
	1.4.2.3 Supplementary cementing materials	19
	1.4.2.4 Admixtures	20
1.5	Mixture Proportioning for Concrete Masonry Units	22
	1.5.1 General	22
	1.5.2 Material	22
	1.5.3 Mix Design of High Strength Concrete Blocks	25
1.6	Behavior of Masonry	26
	1.6.1 General	26
	1.6.2 Compressive strength	27
	1.6.3 Flexural Strength	28
	1.6.4 Tensile Strength	28
	1.6.5 Shear Strength	28

		Page
	1.6.6 Modulus of Elasticity	29
	1.6.7 Creep, Moisture Movement and Thermal Expansion	30
	1.6.8 Unit/mortar/masonry strength relationship	30
	1.6.9 Masonry Mortar	33
	1.6.10 Grout	35
	1.6.11 Failure modes for the masonry composite	36
1.7	Block Units Production	38
	1.7.1 General	38
	1.7.2 History	39
	1.7.3 Production Process	44
	1.7.4 Block Making Machinery	45
	1.7.5 Curing	47
	1.7.5.1 General	47
	1.7.5.2 Various methods of curing	48
	1.7.6 Palletizing and Packaging	59
	1.7.7 Storage and Handling	60
1.8	Masonry Units in Local Market	60
1.9	Masonry codes and Specifications	61
	1.9.1 American Society for Testing and Materials (ASTM)	61
	1.9.2 The American Concrete Institute (ACI)	61
	1.9.3 The International Building Code (IBC)	62
	1.9.4 European Standard (EN, Eurocode)	62
	1.9.5 Egyptian Standards (ES)	62
1.10	Needed Research	62

		Page
CHA	PTER 2 RESEARCH PLAN	
2.1	Introduction	65
2.2	Scope	65
2.3	Objective	65
2.4	Research Plan	66
	2.4.1 Phase I: Units	66
	2.4.1.1 Production	66
	2.4.1.2 Concrete Materials	67
	2.4.1.3 Mix Proportions	68
	2.4.1.4 Curing schemes	68
	2.4.1.5 Properties of produced blocks	70
	2.4.2 Phase II: Walls	71
CHA	PTER 3 PRODUCTION OF HIGH STRENGTH BLOCKS	
3.1	Introduction	73
3.2	Properties of Concrete Materials used	73
	3.2.1 Cement	73
	3.2.2 Aggregates	74
	3.2.3 Chemical Admixtures	76
	3.2.4 Silica Fume	77
	3.2.5 Water	77
3. 3	Mix design and mix proportions	78
3.4	Production process of concrete masonry blocks	81
	3.4.1 General	81
	3.4.2 Receiving and Handling Raw Materials	81

		Page
	3.4.3 Mixing	81
	3.4.4 Pressing	82
	3.4.5 Handling of "Green" product	83
	3.4.6 Production considerations	84
3.5	Curing	85
	3.5.1 General	85
	3.5.2 Curing Schemes	85
3.6	Produced Blocks	85
CHA	PTER 4 TESTING OF CONCRETE MASONRY BLOCKS	8
	AND PRISMS	
4.1	Introduction	87
4.2	Testing of blocks	87
	4.2.1 Compression Test	87
	4.2.2 Splitting Tensile Test	88
	4.2.3 Absorption and Density Tests	89
	4.2.4 Drying Shrinkage Test	90
4.3	Testing of prisms	91
	4.3.1 Construction of samples	91
	4.3.2 Mortar	92
	4.3.2.1 Mortar mix	92
	4.3.2.2 Compression Test of Mortar	93
	4.3.3 Grout	93
	4.3.3.1 Grout mix	93
	4.3.3.2 Compression Test of Grout	94

	Page
4.3.4 Testing of Prisms	95
4.3.5 Modules of Elasticity	96
CHAPTER 5 TEST RESULTS & DISCUSSTIONS	
5.1 General	97
5.2 Block Testing	97
5.2.1 Compression test results and discussion	97
5.2.1.1 General	97
5.2.1.2 Failure Mechanism	97
5.2.1.3 Compression Test Results	97
5.2.1.4 Analysis and Discussion of Test Results	100
5.2.1.4.1 Effect of water content on the block	100
compressive strength	
5.2.1.4.2 Effect of Silica Fume content on the	101
compressive strength of the blocks	
5.2.1.4.3 Effect of Superplasticizer on the block	102
compressive strength	
5.2.1.4.4 Strength gain with age	104
5.2.1.4.5 Effect of curing scheme on the block	
compressive strength	107
5.2.2 Splitting Tensile Test results	112
5.2.3 Absorption and Density Tests	113
5.2.4 Drying shrinkage test results	116
5.3 Masonry prism compression testing	117
5.3.1 General	117
5 3 2 Prisms failure mechanism	117

	Page
5.3.3 Compressive strength results	119
5.3.4 Modules of elasticity test results	120
5.3.5 Analysis and Discussion of Test Results	122
5.3.5.1 Compressive strength	122
5.3.5.2 Modulus of Elasticity	126
5.4 Cost analysis for high strength blocks	127
CHAPTER 6 SUMMARY AND CONCLUSIONS	
6.1 Summary	129
6.2 Conclusions	130
6.2.1 High Strength blocks	130
6.2.2 Masonry walls using high Strength blocks	133
6.2.3 Cost Analysis	135
6.3 Recommendations for further studies	135
REFERENCES	136
APPENDICES	
APPENDIX A	140
APPENDIX B	141

LIST OF FIGURES

	Page
Fig. 1.1 Excalibur Hotel in Las Vegas, USA	2
Fig. 1.2 Microstructure of NSC	5
Fig. 1.3 Pore Connectivity in (a) NSC and (b) HPC	6
Fig. 1.4 Load bearing masonry building, South Australia	11
Fig. 1.5 Prestressing of masonry wall	12
Fig. 1.6 Prestressing of Concrete Masonry Block	13
Fig. 1.7 (a) Photomicrograph of flocculated cement particles in a	21
Portland cement-water suspension with no admixture	
present; (b) photomicrograph of the system after it is	
dispersed with the addition of a superplasticizing admixtu	ıre
Fig. 1.8 Aggregate analysis graph: normal weight	24
Fig. 1.9 Cord Modulus of Elasticity	30
Fig. 1.10 Compressive strength of masonry versus concrete	33
masonry unit strength	
Fig. 1.11 Typical arrangement for making a grout specimen with	36
block	
Fig. 1.12 Failure modes for hollow concrete masonry prisms	37
Fig. 1.13 Visually observed failure sequence for standard moderat	e 38
and weak mortars	
Fig. 1.14 Early single Block Machine	40
Fig. 1.15 Early Multiple Block Machine	40
Fig. 1.16 Modern Plant Transfer System	41
Fig. 1.17 Semi-Automatic Block Machine	43
Fig. 1.18 Full Automatic Block Machine	43
Fig. 1.19 Production Process Flow Chart	44
Fig. 1.20 Fully Automatic Block Handling System	46

	Page
Fig. 1.21 Semi-Automatic Block Handling System	46
Fig. 1.22 Curing Chamber	48
Fig. 1.23 Influence of curing conditions on strength	49
Fig. 1.24 A typical atmospheric steam-curing cycle	50
Fig. 1.25 Relationship between strength at 18 hours and delay	51
period prior to steaming	
Fig. 1.26 Relation between temperature and pressure of saturated	53
steam	
Fig. 1.27 Effect of curing temperature on the compressive strength	56
Fig. 1.28 Cubing Station	59
Fig. 1.29 Handling of Block Package	60
Fig. 2.1 Type of Block making machine to be used in production	66
Fig. 3.1 Sand sieve analysis chart	74
Fig. 3.2 Coarse aggregate (3-6mm) sieve analysis chart	75
Fig. 3.3 Coarse aggregate (6-12mm) sieve analysis chart	76
Fig. 3.4 Automatic control of production	82
Fig. 3.5 Steel mould for hollow block	83
Fig. 3.6 Automatic transfer car	84
Fig. 3.7 Dimensions of hollow block	86
Fig. 4.1 Compression test of block	87
Fig. 4.2 Splitting tension test of blocks	89
Fig. 4.3 Drying of blocks	90
Fig. 4.4 Measuring of block at drying shrinkage test	91
Fig. 4.5 Constructions of masonry prisms	91
Fig. 4.6 Drying of prism samples	92
Fig. 4.7 Preparation of grout samples	94
Fig. 4.8 Testing of prism samples	95

	Page
Fig. 4.9 LVDT used to measure compression strain during testing	96
Fig. 5.1 Failure of Concrete Block	97
Fig. 5.2 Compressive strength test results for block units	99
Fig. 5.3 Effect of water content on block compressive strength	100
Fig. 5.4 Effect of Silica Fume content on the compressive strength	101
of the blocks	
Fig. 5.5 Effect of superplasticizer content on the compressive	103
strength of the blocks	
Fig. 5.6 Strength gain for different mixes with curing scheme "C1"	105
Fig. 5.7 Strength gain for different mixes with curing scheme "C2"	105
Fig. 5.8 Strength gain for different mixes with curing scheme "C3"	106
Fig. 5.9 Strength gain for different mixes with curing scheme "C4"	106
Fig. 5.10 Block compressive strength gain considering the different	107
curing schemes for mix M0	
Fig. 5.11 Block compressive strength gain considering the different	108
curing schemes for mix M01	
Fig. 5.12 Block compressive strength gain considering the different	108
curing schemes for mix M02	
Fig. 5.13 Block compressive strength gain considering the different	109
curing schemes for mix M03	
Fig. 5.14 Block compressive strength gain considering the different	109
curing schemes for mix M04	
Fig. 5.15 Block compressive strength gain considering the different	110
curing schemes for mix M05	
Fig. 5.16 Block compressive strength gain considering the different	110
curing schemes for mix M06	