2013

CLINICAL UTILITY OF SERUM SOLUBLE CTLA-4 ASSAY IN BRONCHIAL ASTHMA PATIENTS

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Dalia Saleh Hassan Ali

M.B., B. Ch., Ain Shams University

Supervised By

Professor / Laila Mohamed Abou El Magd

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Professor / Manal Mohamed Abd El Aziz

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University Faculty of Medicine Ain Shams University 2013

My greatest gratitude is to **ALLAH** whose guidance and support were the main motive behind accomplishing this work.

I would like to express my profound gratitude and sincere appreciation to **Prof. Dr. Laila Mohamed Abou El Magd**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her great help, support, great kindness, gentle guidance and insistence.

I would also like to express my appreciation to **Prof. Dr. Manal Mohamed Abd El Aziz,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her suggestions, help, encouragement and wise guidance.

I would like to express my deep appreciation and gratitude to my **Family**, for their generous infinite help, continuous guidance throughout my whole life. I ask ALLAH to bless them keeping them happy and safe ever.

Dalia Saleh

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the Work	3
Review of Literature	
Bronchial Asthma	4
Cytotoxic T Lymphocyte Associated Antigen-4 (CTLA4)45
Subjects and Methods	73
Results	85
Discussion	115
Summary and Conclusions	123
Recommendations	127
References	128
Arabic Summary	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Classification of asthma according to severity	27
Table (2):	Symptom pattern approach of NAFPP	32
Table (3):	Interpretation of skin test results	40
Table (4):	GINA classification	76
Table (5):	Comparison between the two studied grouregarding to age and sex	
Table (6):	Descriptive statistics of the patient's grown regarding type of asthma	
Table (7):	Descriptive statistics of the patient's grown regarding grade of asthma	
Table (8):	Descriptive statistics of the studied patien group regarding complete blood picture (CBC	
Table (9):	Comparison between patients and contrigroups regarding to the CBC parameters	
Table (10):	Descriptive statistics of the studied patien group regarding duration of the disease, arter blood gases, pulmonary function tests at CTLA-4	ial nd
Table (11):	Comparison between patients and contrigroups regarding to serum CTLA-4 level	
Table (12):	Descriptive statistics of the patient's subgrouregarding to CBC	-
Table (13):	Comparative statistics of the studied parameter in patient's subgroups and healthy growing arding CBC	up
Table (14):	Comparison between patient's subgrouregarding to CBC	
Table (15):	Descriptive statistics of the patient's subgrouregarding duration of the disease, arterial bloogases and pulmonary function test	od

LIST OF TABLES (Cont...)

Tab. No.	Title	Page No.
Table (16):	Comparison between patient's subgroup regarding to duration of the disease, arteria blood gases, pulmonary function test and serui CTLA-4	al n
Table (17):	Comparative statistics of the studied parameter in patient's subgroups and healthy grou regarding serum CTLA-4 level	p
Table (18):	Serum CTLA level in correlation with the studied parameters in the patients group	
Table (19):	Correlation between serum CTLA4 and the studied parameters entire the grades of asthma.	
Table (20):	The diagnostic performance of serum CTLA-in discriminating patients from healthy controls	
Table (21):	The diagnostic performance of serum CTLA- in discriminating severe subgroup from the other subgroups	ie
Table (22):	The diagnostic performance of serum CTLA-in discriminating mild subgroup from the other subgroups	er

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Important risk factors for asthma development in children	7
Figure (2):	Airway inflammation of bronchial asthma	14
Figure (3):	Pathogenesis of bronchial asthma	20
Figure (4):	Effects of airway inflammation	24
Figure (5):	The relationship between inflammation and AHR	26
Figure (6):	An asthma attack with respiratory distress	33
Figure (7):	Spirometer	34
Figure (8):	Chest x-ray of bronchial asthma	35
Figure (9):	Radioallergosorbent Test (RAST)	39
Figure (10):	Skin prick test	40
Figure (11):	The generation the full-length CTLA-4 and sCTLA-4 mRNA	46
Figure (12):	A resume of T-cell activation and costimulatory signals and the evaluation of a possible effect of sCTLA-4 during T-cell activation	50
Figure (13):	Signaling molecules involved in CD28 and CTLA-4 function	51
Figure (14) :	(CTLA-4) expression in peripheral blood lymphocyte subsetss	68
Figure (15):	Genotyping of +49 A/G in <i>CTLA4</i> exon 1 using PCR-RFLP technique and <i>BbV</i> 1(<i>BseXI</i>) enzyme	70
Figure (16):	Genotyping of CT60 SNP (+6230 A/G) in CTLA4 3'UTR using PCR-RFLP technique and NcoI enzyme.	71
Figure (17):	Enzymed linked immunosorbent assay Technique (ELISA).	72

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (18):	Flowmate Spirometer.	75
Figure (19):	Comparison between groups regarding sex	91
Figure (20):	Comparison between groups regarding age	91
Figure (21):	Descriptive statistics of the patient's group regarding type of asthma.	92
Figure (22):	Descriptive statistics of the patient's group regarding grade of asthma	93
Figure (23):	Serum CTLA-4 (ng/ml) between patients and healthy groups	97
Figure (24):	Arterial blood gases between the asthmatic subgroups.	103
Figure (25):	Pulmonary function tests between the asthmatic subgroups.	103
Figure (26):	CTLA-4 among patient's subgroups and control groups.	104
Figure (27):	Correlation between PO2 and CTLA-4 in the patients group ($r = -0.469$, $p = 0.002$)	106
Figure (28):	Correlation between RBC and CTLA-4 in the patients group ($r = -0.503$, $p = 0.001$)	106
Figure (29):	Correlation between HGB and CTLA-4 in the patients group ($r = -0.577$, $p = 0.000$)	107
Figure (30):	Correlation between FVC and CTLA-4 in the patients group ($r = -0.791$, $p = 0.000$)	107
Figure (31):	Correlation between FEV1 and CTLA-4 in the patients group ($r = -0.884$, $p = 0.000$)	108
Figure (32):	Correlation between CTLA-4 and neutrophils in the moderate group ($r = 0.825$, $p = 0.000$)	110

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (33):	Correlation between CTLA-4 and eosinophils in the severe group ($r = 0.906$, $p = 0.001$)	110
Figure (34):	Correlation between CTLA-4 and eosinophils in the severe group ($r = -0.743$, $p = 0.022$)	111
Figure (35):	Correlation between CTLA-4 and MCV in the patients group in the severe group ($r = 0.667$, $p = 0.050$).	111
Figure (36):	Roc Curve in prediction of bronchial asthma	112
Figure (37):	Interactive dot diagram showing the best cut-off point between patients and healthy controls.	112
Figure (38):	Roc Curve in differentiating subgroup Ic from the other subgroups	113
Figure (39):	Interactive dot diagram showing the best cut-off point between subgroup Ic and the other subgroups.	113
Figure (40):	Roc Curve in differentiating subgroup Ia from the other subgroups	114
Figure (41):	Interactive dot diagram showing the best cut-off point between subgroup Ia and the other subgroups.	114

LIST OF ABBREVIATIONS

Abbrev.	Full term
3uTR	Three prime untranslated region
aa	Amino acid
AchR	Acetylcholine receptor
AHR	Airway hyper-responsiveness
AITD	Autoimmune thyroid disease
AP-1	Activator protein 1
APC	Antigen presenting cells
BTLA	B and T lymphocyte attenuator
CCR3	Chemokine receptor 3
CD4	Cluster of differentiation
CTLA-4	Cytotoxic T-lymphocyte associated antigen-4
DCs	Dendritic cells
EDTA	Ethylenediamine tetra-acetic acid
FDA	Food and Drug Administration
FITC	Fluorescein isothiocyanate
FWSC	Forward scatter
GD	Graves disease
GM-CSF	Granulocyte macrophage colony stimulating factor
HLA	Human leukocyte antigens
ICOs	Inducible co-stimulator
IgE	Immunoglobulin E
IL2R	Interleukin 2 receptor
IL-4	Interleukin 4
IL-5	Interleukin 5
IL7R	Interleukin 7 receptor
LABA	Long acting beta adrenoreceptor agonists
LTC4	Leukotriene C4
MCP-4	Monocyte chemotactic protein 4
MDIs	Metered dose inhaler
MG	Myasthenia gravis

LIST OF ABBREVIATIONS (Cont...)

Abbrev.	Full term
MHC	Major histocompatibility
MoAb	Monoclonal antibody
NAEPP	National Asthma education and prevention program
NK-k-β	Nuclear factor K-β
PBS	Phosphate buffer saline
PCR-RFLP	Polymerase chain reaction restriction fragment length polymorphism
PD1	Programmed death 1
PE-Cy7	Pheoerythrin-canin 7
PEF	Peak expiratory flow
Per CP	Peridinin chlorophyll
RAST	Radioallergosorbent test
RBM	Reticular basement membrane
RT	Reverse transcriptase
SABA	Short acting beta 2 adrenoreceptor agonists
SD/SA	Splice donor/splice acceptor
SLE	Systemic lupus erythematosus
SNP	Single nucleotide polymorphism
SSc	Systemic sclerosis
SSC	Side scatter
T1D	Type 1 diabetes
TCA	Tricyclic antidepressants
TCR	T-cell receptor
Th	T-helper
TNF- α	Tumor necrosis factor alpha
uRTIs	Up per respiratory tract infections
VCAM-1	Vascular cell adhesion molecule-1
VEGF	Vascular endothelial growth factor
VEV1	Forced expiratory volume in one second
WHO	World Health Organization

Introduction

Bronchial asthma is a chronic disease that has increased in prevalence over the past two decades (*Janson et al.*, 2001). The disease is characterized by reversible airway obstruction, airway hyper-responsiveness, and airway inflammation (*LaRochelle et al.*, 2007). It is usually manifested by recurrent episodes of wheezing, coughing and shortness of breath. The disease process is usually multifactorial and is associated with genetic, allergic, environmental, infectious and nutritional components (*Bhulani et al.*, 2011).

Inflammation plays a pivotal role in the pathogenesis of bronchial asthma. The disease phenotypes are usually triggered by CD4+T lymphocytes generating the T helper 2- associated cytokines IL-4 & IL-5 (*Oh et al.*, 2010). T cell activation requires the delivery of at least two signals to T cells by the antigen presenting cells. One signal is provided by the ligation of T- cell receptor by the complex of antigen and major histocompatibility complex, while the second co-stimulatory signal is generated by the interaction between CD28 on T cells and its ligands on the antigen presenting cells, B7.1 and B7.2 (*Sato et al.*, 2004 and Oh et al., 2010).

Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is a member of the immunoglobulin gene superfamily. It is expressed on activated T cell and shares sequence homology with CD28 and therefore binds with higher affinity to B7.1 and

B7.2 molecules (*Chan et al.*, *2010*). CTLA-4 can engage inhibitory signal resulting in the down- regulation of T cell responses and induction of apoptosis and immunological anergy (*Botturi et al.*, *2011*).

Recent studies have revealed an alternative transcript of the CTLA-4 gene encoding a protein that lacks a transmembrane region and probably represents a native soluble form of CTLA-4 (*Ryden et al., 2012*). High levels of soluble CTLA-4 have been reported in some autoimmune diseases as systemic lupus erythematosus, myasthenia gravis and Sjogren's syndrome; this in turn pointed to the immunoregulatory functions of this molecule (*Wang et al., 2012*).

AIM OF THE WORK

The aim of the present study is to determine the level of serum soluble CTLA-4 in bronchial asthma patients and to assess the relationship between its level and the degree of the disease severity in a trial to clarify the diagnostic and prognostic value of this marker in bronchial asthma.