

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO - EGYPT

Electronics and Communications Engineering Department

Advanced Acquisition Techniques for Phase Locked Loops

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Electronics and Communications Engineering

Submitted by

Eng. Dina Mohamed Mahmued El-Laithy

Electronics and Communications Eng. Dept. Faculty of Engineering - Ain Shams University

Under supervision of

Prof. Dr. Abdelhalim Abdelnaby Zekry

Communications and Electronics Department Faculty of Engineering Ain Shams University

Dr. Mohamed Abouelatta

Communications and Electronics Department Faculty of Engineering Ain Shams University

EGYPT, CAIRO-2013

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communications Engineering Department

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the degree of Master of Science in Electrical Engineering.

(Electronics and Communications Engineering)

The work included in this thesis was carried out by the author in the integrated circuits laboratory of the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name	:	Dina Mohamed Mahmud El-Laithy
Signature	:	

Date : / / 2013

Abstract

Phase-locked loops (PLLs) have been used in many applications ranging from communications, radar to automobiles. In the recent past, digital phase-locked loops have been widely used in high-performance microprocessors and high-speed digital communication systems as clock generators. As the speed of these systems increasing, the PLLs with higher operating frequency and lower jitter are in demand. So in nearly all the PLL applications, it is required to generate low noise while achieve fast settling time. The settling time is largely determined by the loop bandwidth. In some applications, the loop bandwidth should be made as narrow as possible to minimize output phase jitter due to external noise, resulting in an elongated settling time. One of the solutions to this problem is the adaptive PLL using a wide bandwidth in the out-of-lock state and switching to a narrow bandwidth as the loop settles. With the adaptive PLL, one could speed up the settling process while ensuring sufficient reference feed-through attenuation for low output noise. In this thesis, extended loop bandwidth enhancement is achieved by the adaptive control on the loop filter resistances. Wide bandwidth is used when the PLL is in the out-of-lock state, while the narrow bandwidth is used when the PLL is in the lock state. This can be accomplished by applying different methods to change the loop filter resistance in the out-of-lock state. The change in the loop filter resistance depends on the difference between the input and the output frequencies; as this difference decreases, the resistance change to obtain smooth transition to lock. A frequency difference circuit is used to represents the difference between the input and output frequencies by a certain voltage to control the loop filter resistance. An industrial CMOS 4046 IC is used to implement the PLL, a lock time reduction up to 75% was achieved compared with the conventional PLL.

بسئم الله الرَّحمَن الرَّحيم:

" وَعَلَّمَكَ مَا لَمْ تَكُنْ تَعْلَمُ وَكَانَ فَضْلُ اللهِ عليك عظيماً. "

صدق الله العظيم

Acknowledgements

All praise and gratitude is to **ALLAH**

I'd like to express my deepest gratitude to **Prof. Dr. Abd-Elhalim Zekry** for his outstanding support, patience, encouragement, overcoming any obstacles that might interface my work and continuous guidance without which this thesis would have never been completed. He has been source of ideas and knowledge, yet, his wisdom allowed me to direct my research successfully.

I also wish to express my gratitude to **Dr. Mohamed Abouelatta** for his interest and valuable assistance.

Special thanks and appreciation to **Dr. Essam Atalla** who taught me ORCAD.

I am also indebted to the **Department of Electronics & Communication Engineering, Ain Shams University**, for providing its laboratory and library facilities.

Also, I am greatly thankful to **All My Friends** for their constant support and friendship.

Last but not least, I would like to express my deepest appreciation to My Family. In particular, I am always indebted to My Parents for their constant support, love and patience. Without their continued support, I would have not accomplished this effort. I would like to thank All My Brothers and My Sister for being so supportive and encouraging throughout years of my study.

Abstract

Phase-locked loops (PLLs) have been used in many applications ranging from communications, radar to automobiles. In the recent past, digital phase-locked loops have been widely used in high-performance microprocessors and high-speed digital communication systems as clock generators. As the speed of these systems increasing, the PLLs with higher operating frequency and lower jitter are in demand. So in nearly all the PLL applications, it is required to generate low noise while achieve fast settling time. The settling time is largely determined by the loop bandwidth. In some applications, the loop bandwidth should be made as narrow as possible to minimize output phase jitter due to external noise, resulting in an elongated settling time. One of the solutions to this problem is the adaptive PLL using a wide bandwidth in the out-of-lock state and switching to a narrow bandwidth as the loop settles. With the adaptive PLL, one could speed up the settling process while ensuring sufficient reference feedthrough attenuation for low output noise. In this thesis, extended loop bandwidth enhancement is achieved by the adaptive control on the loop filter resistances. Wide bandwidth is used when the PLL is in the out-oflock state, while the narrow bandwidth is used when the PLL is in the lock state. This can be accomplished by applying different methods to change the loop filter resistance in the out-of-lock state. The change in the loop filter resistance depends on the difference between the input and the output frequencies; as this difference decreases, the resistance change to obtain smooth transition to lock. A frequency difference circuit is used to represents the difference between the input and output frequencies by a certain voltage to control the loop filter resistance. An industrial CMOS 4046 IC is used to implement the PLL, a lock time reduction up to 75% was achieved compared with the conventional PLL.

Table of Contents

Table of Contents	i
List of Figures	vi
List of Tables	xii
List of Abbreviations	xiii
List of Symbols	xiv
Chapter (1)	1-26
Introduction to Phase Locked Loop	1
1.1 Historical Background	1
1.2 Operating principle of PLL	2
1.3 Classification of PLL types	7
1.4 Applications of PLL	7
1.4.1 FM demodulator	8
1.4.2 PLL frequency synthesizers	9
1.4.3 Clock signal recovery	10
1.4.4 Carrier recovery	12
1.5 Linear model of the PLL	13
1.6 Type-Order of the PLL.	14
1.7 Transient response of the PLL in the locked state	16
1.7.1 Phase step applied to the reference input	16
1.7.2 Frequency step applied to the reference input	17
1.7.1 Frequency ramp applied to the reference input	19
1.8 Key parameters of the PLL.	22

1.8.1 Hold-in range $\Delta\omega_H$.	22
$1.8.2$ Pull-out range $\Delta\omega_{PO}$	22
1.8.3 Pull-in range $\Delta\omega_P$.	23
$1.8.4$ Lock-in range $\Delta\omega_L$	25
Summary	26
Chapter (2)	27-55
Basic Building Blocks of the Phase Locked Loop	27
2.1 PLL building blocks	27
2.2 Phase detector (PD)	27
2.2.1 Multiplier phase detector	27
2.2.2 EXOR phase detector.	29
2.2.3 JK-flipflop phase detector	31
2.2.4 Phase-frequency detector (PFD)	33
2.2.4.1 Charge pump (CP)	37
2.3 Loop filter	39
2.3.1 Passive loop filter	40
2.3.1.1 First-order passive lag filter	40
2.3.1.2 First-order passive lead-lag filter	41
2.3.1.3 Second-order passive lead-lag filter	42
2.3.2 Active loop filter	43
2.3.2.1 First-order active lead-lag filter	43
2.3.2.2 Second-order active lead-lag filter	44
2.4 Voltage controlled oscillator	44
2.4.1 Resonant oscillator	45
2.4.2 Relaxation oscillator.	46
2.5 Noise analysis of the PLL systems	49

2.5.1 Sources and types of noise in the PLL	49
2.5.2 Defining noise parameters.	52
2.5.3 The impact of noise on the PLL performance	53
Summary	55
Chapter (3)	56-71
Advanced Acquisition Techniques for Phase Locked Loops	56
3.1 Introduction	56
3.2 Aided acquisition	56
3.2.1 Sweeping the VCO.	57
3.2.2 Changing the loop bandwidth temporarily	59
3.2.2.1 Control the loop gain	59
3.2.2.2 Filter modification	60
3.2.2.3 Comparison of the two types of parameters modifications	61
3.2.3 Addition of frequency discriminator	62
3.3 Proposed techniques to reduce acquisition time	64
3.3.1 Speeding-up PLL using the switched filter technique	64
3.3.1.1 The in-lock detector	65
3.3.2 Speeding-up PLL using the switched-capacitor technique	66
3.3.2.1 The basic principle of the switched-capacitor resistor	
technique	66
3.3.2.2 Proposed PLL using a switched-capacitor resistor technique	67
3.3.3 Speeding-up PLL using the JFET as a VCR	68
3.3.3.1 The basic principle of JFET as a VCR	69
3.3.3.2 Proposed PLL using the VCR	70
Summary	71

Chapter (4)	72-96
Circuit Simulation & Experimental Results	72
4.1 Objective	72
4.2 Circuit simulation.	72
4.2.1 Measuring the performance parameters of the VCO	72
4.2.1.1 Measurement of the VCO center frequency f ₀	73
4.2.1.2 Measurement of the VCO gain K _o	74
4.2.2 Measuring the performance parameters of the PD	75
4.2.3 Loop filter	76
4.2.4 Measuring the performance parameters of the PLL	77
4.2.5 Measurement of the tracking and capture range of the PLL	79
4.2.6 Noise of the PLL systems.	81
4.2.6.1 Adding amplitude noise to the PLL input	81
4.2.6.2 Adding phase noise to the PLL input	83
4.2.7 Type-I vs. Type-II 2 nd order PLL	83
4.2.7.1 Type-I: passive lead-lag filters	84
4.2.7.2 Type-II: active lead-lag filters	85
4.2.7.3 The simulation results of type-I vs. type-II.	86
4.2.8 Speeding-up the PLL based on adaptive loop bandwidth	90
4.2.8.1 The 1 st proposed PLL technique, simulation result	90
4.2.8.2 The 2 nd proposed PLL technique, simulation result	91
4.2.8.3 The 3 rd proposed PLL technique, simulation result	92
4.3 Practical circuit implementation	94
4.3.1 Experimental results of the performance parameters of the VCO.	95
4.3.2 Experimental results of the performance parameters of the PD	96
4.3.3 Experimental results of the performance parameters of the PLL	98

4.3.4 Experimental results of the tracking and capture range of the	
PLL	100
4.3.5 Noise of the PLL system, experimental results	101
4.3.5.1 Adding amplitude noise to the PLL input	101
4.3.5.2 Adding phase noise to the PLL input.	102
4.3.6 Active and passive loop filter PLL, experimental results	103
4.3.7 Speeding-up the PLL, experimental results	104
Summary	106
Chapter (5)	107-108
Summary and Conclusions	107
5.1 Summary	107
5.2 Conclusions.	108
References	109
Publications	112
Appendix A	
PSPICE model parameters for CMOS 4046 IC	113-116

List of Figures

Figure	Page no.
Fig. 1.1 De Bellescize's PLL circuit of the year 1932	2
Fig. 1.2 Basic Phase-Locked Loop arrangement	2
Fig. 1.3 Transfer function of the VCO.	3
Fig. 1.4 Transfer function of PD.	4
Fig. 1.5 Transient response of a PLL onto a step variation of the	
reference signal	6
Fig. 1.6 FM demodulator	8
Fig. 1.7 Frequency Synthesis	9
Fig. 1.8 Frequency Synthesis (cot.)	10
Fig. 1.9 Block diagram of the early-late method.	10
Fig. 1.10 Gate timing of the early-late gate circuit	11
Fig. 1.11 Costas loop.	12
Fig. 1.12 Linear model of the PLL.	13
Fig. 1.13 Phase step input applied at $t = 0$	16
Fig. 1.14 Transient response of a second-order LPLL to a phase	
step $\Delta \phi$	17
Fig. 1.15 Frequency step $\Delta \omega$ applied at $t = 0$	18
Fig. 1.16 Transient response of a second-order LPLL to a	
frequency step $\Delta\omega$.	19
Fig. 1.17 Frequency ramp starting at $t = 0$.	20
Fig. 1.18 Transient response of a second-order LPLL to a	
frequency ramp	21
Fig. 1.19 The frequency modulation of the VCO output signal in	
the unlocked state.	23
Fig. 1.20 The pull-in process.	24

Fig. 1.21 Scope of the static and dynamic limits of stability of a	
PLL	26
Fig. 2.1 Basic Phase-Locked Loop arrangement	27
Fig. 2.2 Multiplier phase detector.	28
Fig. 2.3 Multiplier phase detector characteristics.	29
Fig. 2.4 EXOR phase detector.	29
Fig. 2.5 EXOR phase detector waveforms	30
Fig. 2.6 EXOR phase detector characteristics	31
Fig. 2.7 JK-flipflop phase detector	31
Fig. 2.8 JK-flipflop phase detector waveforms	32
Fig. 2.9 JK-flipflop phase detector characteristics	33
Fig. 2.10 Block diagram of the PFD.	33
Fig. 2.11 State diagram of the PFD.	34
Fig. 2.12 PFD waveforms	36
Fig. 2.13 PFD characteristics	37
Fig. 2.14 Charge pump basic structure.	38
Fig. 2.15 PFD/CP characteristics.	39
Fig. 2.16 First order passive lag filter.	40
Fig. 2.17 First order passive lead-lag filter	41
Fig. 2.18 Second order passive lead-lag filter	42
Fig. 2.19 First order active lead-lag filter	43
Fig. 2.20 Second order active lead-lag filter	44
Fig. 2.21 Schematic of an LC oscillator with a varactor diode for	
tuning	46
Fig. 2.22 The simplified schematic of the VCO	47
Fig. 2.23 The characteristic of a VCO.	48
Fig. 2.24 Added noise to information signal.	50
Fig. 2.25 Frequency and time domain effects of noise in PLL,	
(phase noise)	51

Fig. 2.26 A data signal is reshaped, amplitude noise is converted to	
phase noise	51
Fig. 2.27 Definition of noise parameters	52
Fig. 2.28 Method of calculating the output phase jitter of the PLL	54
Fig. 2.29 The noise bandwidth of a second-order PLL as a function	
of ζ	55
Fig. 3.1 PLL with frequency swept aided acquisition	57
Fig. 3.2 PLL with frequency swept aided acquisition using	
switched sweep current	58
Fig. 3.3 PLL with gain control aided acquisition	59
Fig. 3.4 Modification of filter for acquisition	60
Fig. 3.5 A simplified block diagram of a PLL using a switched	
loop filter	61
Fig. 3.6 Bode plots corresponding to loop during acquisition	61
Fig. 3.7 Phase locked acquisition assisted by a frequency	
discriminator	62
Fig. 3.8 PLL with quadricorrelator as a frequency discriminator for	
aided acquisition	63
Fig. 3.9 Practical quadricorrelator	63
Fig. 3.10 A simplified block diagram of a PLL using a switched	
loop filter	65
Fig. 3.11 In-lock detector.	65
Fig. 3.12 Basic principle of the switched-capacitor	67
Fig. 3.13 A block diagram of the proposed PLL using a switched-	
capacitor resistor technique	68
Fig. 3.14 The voltage-controlled resistor (VCR)	69
Fig. 3.15 Typical N-channel JFET operating characteristics	70
Fig. 3.16 A block diagram of the proposed PLL using VCR	71
Fig. 4.1 The block diagram of the PLL.	72

Fig. 4.2 The 74HC4046 PLL IC block and connection diagrams	73
Fig. 4.3 The test circuit for the measurement of the center	
frequency and the VCO gain.	73
Fig. 4.4 The simulated characteristic of the VCO	75
Fig. 4.5 The test circuit for the measurement of the PD gain K_{d}	75
Fig. 4.6 The simulated characteristic of the PD	76
Fig. 4.7 First order passive lead-lag filter.	77
Fig. 4.8 The test circuit for the measurement of natural frequency	
and damping factor	78
Fig. 4.9 The output signal of the loop filter v _f	78
Fig. 4.10 The simulated output signal of the loop filter $v_{\rm f}$	79
Fig. 4.11 The test circuit for the measurement of the tracking and	
the capture range	80
Fig. 4.12 The simulated output signal of the loop filter v_f	80
Fig. 4.13 Added amplitude noise to the reference input signal	82
Fig. 4.14 (a) The sum of noise with the reference input signal. (b)	
The PLL output signal.	82
Fig. 4.15 The output spectrum of the PLL with amplitude noise	82
Fig. 4.16 Added phase noise to the reference input signal	83
Fig. 4.17 The output spectrum of the PLL with phase noise	83
Fig. 4.18 (a) First-order passive lead-lag filter. (b) Its amplitude	
response	84
Fig. 4.19 (a) First-order active lead-lag filter. (b) Its amplitude	
response	85
Fig. 4.20 The amplitude and phase response of the passive and	
active 1 st order lead-lag filter	86
Fig. 4.21 The closed loop transfer function of the PLL for type-I	
and type-II	87