

Low temperature performance of some electronic devices and circuits for space applications

by:

Doaa Hassan Hanafy Mahmoud

A Thesis Submitted in Conformity with the Requirement for the Degree of Master in Science (Physics - Electronics)

Supervised by

Prof. Dr. Eng. Fouad A. S. Soliman

Professor of Electronics & Computer Eng. Head, Electronics Engineering Dept., Nuclear Materials Authority.

Prof. Dr. Thanaa A. Kamh

Professor of Electronics,
Physics Dept., Faculty of Women for
Arts, Science, and Education,
Ain Shams University.

Dr. Safaa M. R. El-Ghanam

Assistant Professor of Electronics, Physics Dept., Faculty of Women for Arts, Science, and Education, Ain Shams University.

Supervision Committee

Low temperature performance of some electronic devices and circuits for space applications

Presented by Doaa Hassan Hanafy Mahmoud

Submitted for Partial Fulfillment of Master Degree in Science

Approved by:

Signature

Prof. Dr. Eng. Fouad A. S. Soliman

Professor of Electronics & Computer Eng. Head, Electronics Engineering Dept., Nuclear Materials Authority.

Prof. Dr. Thanaa A. Kamh

Professor of Electronics, Physics Department, Faculty of Women, Ain-Shams University.

Dr. Safaa M. R. El-Ghanam

Assistant Professor of Electronics, Physics Department, Faculty of Women, Ain Shams University.

بِسُمِ اللهِ الرَّحْمنِ الرَّحِيمِ

وَيَسْأَلُونَكَ عَنِ الرَّوجِ قُلُو الرَّوجُ مِنْ أَمْرِ رَبِّينُ وَمَا أُوتِيتُهُ مِّنَ الْعِلْمِ إِلَّا فَلِيلًا الْعِلْمِ إِلَّا فَلِيلًا

الإسراء

My parents (Father and
Mother),
My husband,
My brother,
My sisters,
My cognates,
My professors
and
My colleagues

ACKNOWLEDGEMENTS

I am kneeling obsequiousness to ALLAH thanking HIM for showing me the right way. Without God help, my efforts would have gone astray. It was through the grace of God that I was able to acquire this great accomplishment. Thanks also for a person I love him very much, the Prophet Mohammed {God's praise and peace upon}.

Great thanks to the Head of Physics Department for her kind help and continuous encouragement for me and all young scientists in our department.

Also, I wish to express all my deepest and sincerest gratitude to Prof. Dr. Eng. Fouad Abdelmonem Saad Soliman, Head, Elecctronics Engineering Dept., Exploration Sector, Nuclear Materials Authority. I am deeply indebted to him for his enormous patience, guidance, and support throughout the work program. My inspiration came from his passion for research and his confidence in my abilities. Working under his leadership in such an exciting field was both educationally and professionally enriching. As a model researcher, I look up to him for inspiration in my professional career.

I wish to express my deepest sincerest thanks to Prof. Dr. Thanaa Abdel-Tawab Kamh, Prof. of Electronics, Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for her capable supervision, guidance that helped enhancing my understanding of this field and who has given me much guidance necessary for this project, and done so with a great deal of patience and valuable insight. She has been the driving force of this project.

I would also like to extend a special thanks to Dr. Safaa Mohammed Roshdy El-Ghannam, Ass. Prof. of Electronics, Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, who was more helpful, understanding, and enjoyable to work with throughout the course of the work, and for her capable supervision, fruitful guidance, encouragement, ideas, endless help and many illuminating discussions through the course of the investigation.

I would also like to thank the Electronics Research Laboratory team, Physics Department, Faculty of Women, Ain Shams University for supporting this work.

Finally, but in no way the least important, I would like to thank my family, for their support, encouragement, and understanding throughout my M.Sc.'s research and for all the good and bad times we had together.

ABSTRACT

The present thesis is devoted in a trial to shed further light on two attractive electronic devices, namely; quartz crystals and ceramic resonators. Also, the study was extended to include most applications of both devices as an electronic filters and oscillators. In this concern, the electrical properties of different quartz crystals (operates at frequency values of ','o' MHz, ',o'qo'o MHz and ',... MHz) and ceramic resonators (covering the frequency range from '... kHz up to ',... MHz) and their applications as electronic filters and oscillators were investigated. Finally, the study was extended to include the operation of such devices at very low temperatures down to cryogenic levels simulating their applications at outer space.

The main static electrical parameters of the proposed devices (impedance (Z), equivalent parallel inductance (L_p), equivalent parallel capacitance (C_p), equivalent parallel resistance (R_p), phase angle (φ), dissipation factor (D), and quality factor (Q), were plotted as a function of frequency. Also, the elemental composition of the proposed ceramic resonator samples was determined applying the EDXRF technique, where ceramic samples were proved to be with major components of Lead (Pb), Zirconate (Zr), and Titanite (Ti).

The design and analysis of different filter - and oscillator - circuits based on both devices were investigated experimentally, and

the obtained results were compared with those results obtained from simulation; applying Electronic Workbench programs, and theoretically; calculated applying computer programs using MATLAB language.

It is to be noted that, for both devices, the stability of their circuits either used as filters or oscillators was proved to be better than 90%, whenever circuit passive elements tolerated to extreme values, up to more than $\pm 7 \cdot \%$ of their initial circuit design values.

Considering low temperature levels applications, for quartz samples, their static characteristics were studied at the investigated temperature range (ITR) from $^{\gamma \gamma \gamma}$ K down to $^{\gamma \gamma}$ K, where, the obtained data were analyzed at the two main frequencies of the devices, i.e., resonance (F_r) - and anti-resonance (F_a) - frequencies. For $^{\gamma, \circ \vee \gamma \circ \iota \circ}$ MHz quartz crystals, as an example, and at F_r , the dependences of C_p , φ , and D on temperature were shown to follow U- distribution curve shapes, where their initial values of $^{\gamma, \wedge}$ pF, $^{\gamma \gamma, \vee \gamma}$ and $^{\gamma, \vee \gamma}$ were shown to exhibit minimum values of $^{\sigma, \gamma}$ pF, $^{\gamma \gamma, \vee \gamma}$ and $^{\gamma, \vee \gamma}$, measured at temperature range of around $^{\gamma \gamma}$. K. For lower temperature levels, down to $^{\gamma \gamma}$ K, the previous three parameters exhibit values of $^{\iota \gamma \gamma}$ pF, $^{-\circ \gamma, \vee \gamma \circ}$ and $^{\gamma, \vee \gamma}$, respectively.

On the other hand, the dependence of L_p , Z, R_p , and Q on temperature were shown to follow an opposite trend, i.e., nearly, obey, the Gaussian distribution shapes, where their initial values of

•,••15 mH, •,15 k Ω , •,4 Λ k Ω , and 1,17 show maximum values of •,•51 mH, •,4 Λ k Ω , e,5 Λ k Ω , and Λ ,71, respectively, occur at temperature range of around 17• - Λ • K. Also, and for lower temperature levels, down to Λ K, their values were shown to be dropped down to •,• Λ 7 mH, •,1 Λ k Ω , •,97 k Ω and 5,75, respectively.

For the same quartz crystal samples, and at F_a , it was proved that also, the dependence of C_p , φ , and D on low temperatures obey the Gaussian distribution curve shape, where their initial values of 1,9° pF, -7°,1°°, and •, Λ ° were shown to increase, reaching maximum values of Π °, pF, -7°, Π °, and Π °, occur at temperature range of around Π ° - Π ° K. While for lower temperatures levels, down to Π ° K, their values were shown to decrease down to Π °, Π °, and Π °, respectively. Finally, considering Π °, Π °, and Π °, Π °, respectively. Finally, considering Π °, Π °, and Π °, Π °, and Π °, Π °, show minimum values of Π °, Π

Considering the square wave oscillators - based on quartz crystals namely; Pierce in CMOS ($^{\vee\xi}HCO^{\xi}$), CMOS Two-Inverters - ($^{\vee\xi}HC^{\vee\xi}$), and TTL Two-Inverters-($^{\vee\xi}S^{\vee\xi}$), their oscillation frequencies were shown to be almost temperature independent within the investigated temperature range, where the maximum

observed shifts on their values from the predetermined oscillation frequencies were shown to be around ., %, ., ., %, and ., \%, respectively.

Concerning the operation of the ceramic resonators, for CRB $\stackrel{\xi}{\circ}{\circ}$ kHz ceramic resonator, as an example, it was proved that, at F_r , the values of C_p , R_p , and φ were shown to decrease with lowering the temperature down to $\stackrel{q}{r}$ K with a ratio of around $\stackrel{h}{\wedge}$, $\stackrel{r}{\wedge}$, $\stackrel{r}{\wedge}$, $\stackrel{q}{\wedge}$, and $\stackrel{h}{\circ}$, $\stackrel{h}{\wedge}$, respectively. On the other hand, the rest parameters L_p , and Z were shown to increase several times of their initials (about five, and three times, respectively) as a function of lowering temperature. Besides, at F_a , the dependence of C_p on temperature, within the ITR, was shown to follow nearly U-distribution shape, where its initial value was $\stackrel{\xi}{\circ}$, $\stackrel{\circ}{\circ}$ pF shows a minimum value of $\stackrel{\tau}{\circ}$, $\stackrel{h}{\circ}$ pF, measured within temperature range of around $\stackrel{h}{\circ}$, $\stackrel{\kappa}{\circ}$. While, lowering the temperature down to $\stackrel{q}{\circ}$ K, its value was shown to increase up to $\stackrel{\xi}{\circ}$, $\stackrel{h}{\circ}$ pF.

On the other hand, L_p shows an opposite trend, i.e., obeys Gaussian distribution shape, where its initial value of 77.7 mH shown to increase, reaching maximum value of 97.7 mH, measured at the same temperature range (around $14.6 \times 1.0 \times$

For lower temperatures, down to q K, its value was shown to decrease again down to r mH. On the other hand, Z, and R_p were shown to decrease pronouncedly with decreasing temperature with a ratio of around r %, and q %, respectively.

The resonance-, and anti-resonance-frequencies, as well as, the center frequency were shown to be shifted toward lower frequency values, as a function of lowering temperature in the range from room level down to around 10. K - 17. K. For lower temperature levels, down to 9. K, their values were shown to increase exponentially, again, the matter which is attributed to the recorded changes on the equivalent circuit elements of the devices.

Ceramic resonators operation, in the temperature range from room level down to ⁹ K, was considered. In this concern, filter circuits (band reject filter, band- pass filter, and trap filter), and oscillator circuits (square wave oscillator and sine wave oscillator) were investigated.

For the band reject filter circuit, the main change on its response curve was shown as an increase in the voltage value at stop-band, where its initial value of ','. Volts was shown to increase exponentially up to ','. Volts within the predetermined temperature range. While, for the band pass filter circuits, decreasing the temperature down to around ',' K leads both the center frequency and selectivity to decrease with ratios of around ',' % and ','. %. On the other hand, and for temperature levels below ',' K, both parameters were shown to increase with ratios of around ',' % and ',' %, respectively. In contrast, the filter pass band width was shown to increase with a ratio of around ',', %, for the first temperature range. While for the second temperature range, its value was shown to decrease with ratio of around ',', %.

On the other hand, the insertion loss was shown to decrease with a ratio of around γ^{r}, γ^{o} . In contrast, V_{pp} max. was shown to increase with a ratio of around γ^{r}, γ^{o} .

Also, for the trap filter circuit, the main changes occur on its frequency response was shown to be an increase in the voltage value at stop-band, where an initial value of ', ' Volt, measured at room temperature was shown to increase exponentially up to ', o' Volts, measured at '' K.

Considering the oscillator circuits based on ceramic resonators, and for the square wave oscillators the recorded main changes on their electrical parameters were shown to be an increase exponentially in both the rise- and fall- times parameters, with ratios of around $^{1\circ}$, $^{\circ}$ and 7 , $^{\circ}$, $^{\circ}$, respectively. On the other hand, for the sine wave oscillators, decreasing temperature leads the values of the parameters V_{pp} and RMS to decrease exponentially with a ratio of around $^{\circ}$, $^{\circ}$, and $^{\circ}$, $^{\circ}$, respectively. On the other hand, all of the frequency, period and mean parameters are being appears constant with decreasing temperature.

LIST OF SYMBOLS & ABBREVIATIONS

B.P.: Band-Pass

B.R.: Band-Reject

B.W: Pass Band Width (Hz)

C_p: Equivalent parallel capacitance (F)

C.: Shunt capacitance (F)

CMOS: Complementary Metal-Oxide-Semiconductor

CPC: Coated Piezoelectric Crystal

DRIE: Deep Reactive Ion Etching

D-Factor: Dissipation Factor

EDXRF: Energy Dispersive X- ray Florescence System

 F_r : Resonance frequency (Hz)

F_a: Antiresonance frequency (Hz)

F_o: Center frequency (Hz)

Hz: Frequency (Hz)

H.P.: High-Pass

IC: Integrated Circuit

K: Temperature (Kelvin)

K_{eff}: Effective electro-mechanical coupling coefficient

L_p: Equivalent parallel inductance (H)

L.P.: Low-Pass

MATLAB: Mathematics Laboratory

NPS: Nitrated Polystyrene

PZT: Lead Zirconate Titanate

ppm: part per million

PQC: Piezoelectric Quartz Crystal

Q- Factor: Quality Factor

QCM: Quartz Crystal Microbalance

 R_p : Equivalent parallel resistance (Ω)

RH: Relative Humidity

SAW: Surface Acoustic Wave

TTL: Transistor-Transistor Logic

TFC: Temperature-Frequency Characteristics

XRF : X-Ray Florescence Analysis

XRD: X-Ray Diffraction Analysis

Z: Impedence (Ω)

 Φ : Phase Angle (Degree)

Period: Reciprocal of frequency (sec).

J.J.

 $V_{\text{\tiny DD}}$: Absolute difference between the maximum and minimum amplitude in the entire waveform or gated region (Volt).

High Voltage: The maximum output voltage without ripples(Volt).

TUT

Low Voltage: The minimum output voltage without ripples (Volt).

Pos. Duty Cycle: Timing measurement of the first cycle in the waveform or gated region. The ratio of the positive pulse width to the signal period expressed as a percentage.

$$PostiveDutyCycle = \frac{PostiveWidth}{Period}x100$$

Neg. Duty Cycle: Timing measurement of the first cycle in the waveform or gated region. The ratio of the negative pulse width to the signal period expressed as a percentage.

$$NegativeDutyCycle = \frac{NegativeWidth}{Period}x100$$

Rise Time, t_r : It is the time taken by the output voltage (or current) to rise from $\frac{1}{2}$ to $\frac{9}{2}$ of its maximum value (sec).

Fall Time, t_f : It is the time interval during which the output voltage (or current) falls from 9.% of its maximum value to 9.% (sec).

RMS: The Root Mean Square voltage over the entire waveform or gated region (Volt).

Mean: The arithmetic mean over the entire waveform or gated region (Volt).

Pos Over Shoot : Voltage measurement over the entire waveform or gated region expressed as a percentage.

$$PostiveOvershoot = \frac{Max - High}{Amplitude} x100$$