Sleep in Intensive Care Unit

An Essay

Submitted by

Ghada Rabie El demerdash

M.B.,B.CH.

For The Partial Fulfillment of Master Degree in ICU
Supervised by

Prof Dr. Bassel Mohammed Nour El din

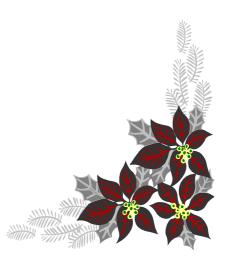
Professor of anesthesia and intensive care
Faculty of Medicine
Ain Shams university

Ass. Prof. Dr.Rasha Samir Bondok

Assistant professor of anesthesia and intensive care
Faculty of Medicin
Ain Shams university

Dr. Hany Ahmed Abd elkader

Lecturer of anesthesia and intensive care
Faculty of Medicine
Ain Shams university


Faculty of Medicine Ain Shams university 2013

"قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إِلَّا مَا عَلَمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ مَا عَلَمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ"

صدق الله العظيم (سورة البقرة:32)

Acknowledgement

First of all, I would like to praise Allah who granted me the strength to accomplish this work my True love and thanks to my family for their tremendous help, guidance and support, my special thanks, love and gratitude to my beloved father.

Words do fail to express my deepest gratitude and sincere appreciation to prof. Dr. Bassel Mohammed Nour – El din, professor of anesthesia and ICU, faculty of medicine, Ain - shams university, for his precious advice, invaluable instruction and powerful support.

I would like to express my deepest gratitude and thanks to Dr. Rasha Samir Bondok, Assistant professor of anesthesia and ICU, Faculty of medicine, Ain - shams university for her helpful support, valuable remarks and constructive encouragement.

I wish to direct my special thanks to Dr. Hany Ahmed Abd - El Kader , Lecturer of anesthesia and ICU, Faculty of medicine , Ain - shams university, for his honest supervision and helpful discussion and for providing great effort help and meticulous remarks.

CONTENTS

	page
List of Abbreviations	I
List of Tables	III
List of Figures	IV
INTRODUCTION	1
AIM OF THE WORK	3
Chapter (1) Normal sleep and circadian processes	4
Chapter (2) Adverse effect of sleep deprivation in the ICU	22
Chapter (3) Effects of commonly used ICU medications on sleep	36
Chapter (4) Effects of common medications used for sleep disorders	50
Chapter (5) Sleep and mechanical ventilation	68
Chapter (6) Diagnosis and management of obesity hypoventilation syndrome in ICU	75
Chapter (7) The overlap syndrome : chronic obstructive pulmonary disease and obstructive sleep apnea	87
Chapter (8) Common sleep problems in ICU: heart failure and sleep – disordered breathing syndromes	94
Chapter (9) Non respiratory sleep disorders found in ICU patients	107
Chapter (10) The sleep friendly ICU	132
English summary	138
References	139
Arabic summery	

Abreviations

AHI Apnea - hypopnea

APSSV Adaptive pressure support servo-ventilation

ASD Acute stress disorder BMI Body mass index

BZRA Benzodiazepine receptor agonists

CHF Congestive heart failure CNS Central nervous system

COPD Chronic obstructive pulmonary disease
CPAP Continous positive air way pressure
CRT Cardiac resynchronization therapy

CSA-CSR Central sleep apnea with cheyne stokes respiration

DLMO Dim light melation onset EEG Electroencephalogram

EPA U.S. Environmental protection agency EPAP Expiratory positive airway pressure FDA The U.S. food and Drug administration

GABA Gamma amino butyric acid GHB Gamma hydroxyl butyrate

ICSD International classification of sleep disorders

ICU Intensive care unit

IPAP Inspiratory positive pressure ventilation

LDT Lateral dorsal tegmentum

MT Melation receptor ND Nightmare disorder

NIPPV Noninvasive positive pressure ventilation

NIV Noninvasive ventilalian

NPPV Noninvasive positive pressure ventilation

NREM Non rapid eye movement

OHS Obesity hypoventilation syndrome

OSA Obstructive sleep apnea

OSAHS Obstructive sleep apnea - hypopnea syndrome

OTC Over the - counter

PAP Positive airway pressure
PAV Proportional assist ventilation
PFT Pulmonary Function test

PLMD Periodic limb movement disorder

PLMS Peroiodic Limb movements

PNS Parasympathetic nervous system
PPT Pedunculopontinetegmentum

PSC_t Polysomnography

RBD Rapid eye movement sleep behavior disorder

RBD	Rapid eye movement sleep behavior disorder
REM	Rapid eye movement
RLS	Restless legs syndrome
SCN	Supra chiasmatic nucleus
SNS	Sympathetic nervous system
SRB	Sleep related bruxism
$SSRI_s$	Selective serotonin - reuptake inhibitors
SWS	Slow wave sleep
TMP	Transmural pressure

List of Tables

Number of table	Торіс	Page
Table 1	Tonic and phasic REM characteristics	8
Table 2	Effect of medications used in the ICU on sleep	37
Table 3	Comparison between sedation and naturally occurring sleep	39
Table 4	Effect of drugs on pre – existing sleep disorders	49
Table 5	U.S. food and drug administration – approved hypnotic agents	53
Table 6	Essential diagnostic criteria for diagnosis of restless legs syndrome	63
Table 7	Medication classes that may worsen restless legs syndrome symptoms	65
Table 8	Clinical features that assist distingwishing OSAHS from CSA – CSR.	103

List of Figures

Number of Figure	Title	Page
Fig 1	Stage wake o	5
Fig 2	Stage 1 or N ₁ sleep	6
Fig 3	Stage 2 or N ₂ sleep	7
Fig 4	Hypnograms	9
Fig 5	Process c and process s	10
Fig 6	Sleep and waking centres	13
Fig 7	Ventilatory response to O2 with sleep stages	17
Fig 8	Ventilatory response to carbon dioxide with sleep stages	18
Fig 9	Management of patients who have OHS requiring hospitalization because of acute on chronic hypercapnic respiratory failure	84
Fig 10	Summary of the control of ventilation	101

Introduction

INTRODUCTION

The cyclic repetition of sleep and wakefulness states is essential to the basic functioning of human body. As understanding of the neurobiology of sleep increases, sleep is no longer viewed as a passive state i.e. absence of wakefulness but rather as an active neurobehavioral state that is maintained through a highly organized interaction of neurons and neural circuits in the central nervous system (Markov and Goldman, 2006).

Sleep is characterized by a variety of physiologic behavioral, and Electroencephalogram (EEG) changes and is necessary for restoration of cognitive, mood, and physiologic functions (McCareley, 2007).

Sleep consists of two strikingly different states, rapid-eye- movement (REM) sleep. Non-REM sleep can be subdivided further into four stages. Polysomnography is the "gold standard" technique which simultaneously records the three physiologic measures that define the main stages of sleep and wakefulness. These measures are muscle tone recorded through electromyogram, eye movements recorded through electro-oculogram and brain activity recorded through EEG (Markov and Goldman, 2006).

Patients in the ICU are known to have severly disrupted sleep and some patients manifest unique EEG sleep patterns. The etiology of sleep disruption in the intensive care unit (ICU) includes the inherent nature of the environment, medications, ventilator-patient interaction, and the effect of acute illness (**Friese et al, 2007**).

Any agent that acts on or through sleep regulatory neurotransmitters, modulators, or their receptors can impact sleep architecture. Abrupt withdrawal from chronic medications, including recreational drugs, can cause serve sleep

disruption and delirium. In critically ill patients, it is difficult to ascertain a single drug's effect on sleep architecture (**Pandhardipande and Ely, 2006**).

Studies reveal that sleep deprivation is associated with many derangements in physiologic parameters that could negatively affect the pathophysiology, treatment, and recovery from critical illness; and hencecontributes to an increased morbidity and mortality. An integrative approach that includes both pharmacologic and nonpharmacologic strategies should be undertaken to prevent and treat sleep deprivation. An emphasis should be placed on providing an ICU environment that is both diurnal and sleep friendly (**Bourne and Mills, 2004**).

Aim of the Work

AIM OF THE WORK

This essay aims to provide an overview of neurophysiology and pharmacology of drugs affecting sleep mechanisms and the current knowledge of the causes, effects and management of sleep problems in intensive care units.

CHAPTER (1)

NORMAL SLEEP AND CIRCADIAN PROCESSES

Normal Sleep and Circadian Processes

Sleep is a natural process occurring in animals and human beings. It is a complicated state involving both behavioral and physiological processes. Several brain centers are involved in the production and regulation of sleep using a variety of hormones, neurotransmitters and peptides.

Normal sleep staging

Sleep is an essential physiologic process for most living organisms. Sleep is divided into non rapid eye movement (NREM) sleep and rapid eye movement sleeps (REM). Older sleep staging developed by Rechtschaffen and Kales divided NREM sleep into four stages, numbered 1, 2, 3, and 4 (Rechtschaffen and Kales, 1968).

According to the newly released American Academy of Sleep Medicine scoring criteria, NREM sleep is now characterized by three stages (N1, N2, N3), with N3 encompassing the older classification of stages 3 and 4. These stages are based on a constellation of physiologic parameters and are defined by electrophysiologic waveforms and frequencies using electroencephalographic (EEG) monitoring (Iber et al., 2007).

Sleep stage 1 (N1) comprises about 2% to 5% of sleep and consists of a low voltage, mixed frequency pattern, usually in the theta