Non Invasive Tools in Assessment Of Liver Fibrosis in Patients with Chronic Hepatitis B

Thesis

Submitted for partial fulfillment of master degree in Tropical Medicine

By

Haitham Mamdouh Ibrahim

M.B.B.CH Ain Shams University

Under Supervision of

Prof. Dr. Mohamed Khiry El Naggar

Prof. of Tropical Medicine Faculty of Medicine – Ain Shams University

Prof. Dr. Gamal El Din Esmat Gamil

Prof. of Tropical Medicine Faculty of Medicine – Cairo University

Ass. Prof. Dr. Nadia Abdel Aaty Abdel Kader

Assistant professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Lina Lighting

Faculty of Medicine Ain Shams University 2013

List of Contents

Subject	Page
Bubject	no.
List of Abbreviations	i
List of Tables	iv
List of Figures	viii
Introduction	1
Aim of work	6
Review of Literature	
➤ Chapter 1: Virology & Fibrogenesis	7
Chapter 2: Liver biopsy	33
➤ Chapter 3: Noninvasive Assessment	55
of liver fibrosis	
Patients and Methods	96
Results	105
Discussion	129
Summary	139
Conclusion	141
Recommendations	142
References	143
Arabic summary	

List of Abbreviations

A	Necroinflammatory activity
AAR	ALT/AST ratio
AASLD	American Association for the Study of Liver Diseases
AFP	α-Foetoprotein
AIH	Autoimmune hepatitis
ALT	Alanine Aminotransferese
ANA	Antinuclear antibody
API	age/platelet index
APRI	AST to Platelet Ratio Index
ARFI	acoustic radiation force impulse imaging
ASH	Alcoholic steatohepatitis
AST	Aspartate Aminotransferese
BMI	Body Mass Index
CBC	Complete Blood Count
cccDNA	Closed circular DNA
СНВ	chronic hepatitis B
СНС	Chronic Hepatitis C
CLD	chronic liver disease
CRS	the cirrhosis risk score
EASL	European Association of Study of Liver
ECM	Extracellular Matrix
F	Fibrosis
FRT	Fibrosis routine test
GUCI	Göteborg University Cirrhosis Index
HA	Hyaluronic acid
HAI	Histological activity index
HbcAg	Hepatitis B core Antigen
HBeAg	Hepatitis B e Antigen
HBIG	hepatitis B immune globulin
HBsAg	Hepatitis B surface antigen

HBV	Hepatitis B virus
HCC	Hepato cellular carcinoma
HCV	Hepatitis C virus
HDL	High Density Lipoprotein
HDV	Hepatitis D virus
HIV	Human immunodeficiency virus
HVPG	hepatic-vein portal gradient
HS	Highly significant
IgG	Immunoglobulin G
IgM	immunoglobulin M
INR	International normalized ratio
IQR	Interquartile range
kPa	Kilopascals
MMP	matrix metalloproteinases
MR	Magnetic resonance elastography
elastography	Wagnetic resonance crastography
NAFLD	Nonalcoholic fatty liver disease
NASH	Non alcoholic steatohepatitis
NHANES	National Health and Nutrition Examination Survey
NS	Non-significant
ORFs	open reading frames
PBC	primary biliary cirrhosis
PCR	Polymerase Chain Reaction
PDGF	Platelet deriving growth factor
PICP	Procollagen type I carboxy-terminal peptide
PIIINP	Procollagen type III amino-terminal peptide
PIIINP or P3NP	Procollagen type III amino-terminal peptide
PT	Prothrombin Time
S	Significant
S.Cr	Serum Creatinine
SNP	single nucleotide polymorphisms
TE	Transient Elastography
TGF 1	transforming growth factor 1
TGFα	Transforming growth factor alpha

TGFβ	Transforming growth factor beta
The ELF group	The European Liver Fibrosis Group assay group
TIMP-1	Metalloproteinase 1
TIMPs	tissue inhibitors of metalloproteinases
TLR4	Toll-like receptor 4
TLR9	Toll-like receptor 9
VCTE	Vibration-Controlled Transient Elastography
VEGF	Vascular Endothelial Growth Factor

List of tables

(1) Tables in the review

Subject	Page no.
Table (1): Interpretation of Serologic Markers of HBV Infection	19
Table (2): Indications of liver biopsy	36
Table (3): Contraindications of Liver biopsy	42
Table (4): Complications of liver biopsy	44
Table (5): Examples of Indirect serum markers	71
Table (6): Classification of Direct markers	81
Table (7): Panels with direct & indirect markers	86
Table (8): Advantages and Disadvantages of Currently available Noninvasive Methods in Patients With Hepatitis B or C	94

(2) Tables in the results

Subject	Page no.
Table (1): Demographic data among the studied group of patients	105
Table (2): Distribution of symptoms and signs among the studied group	106
Table (3): Laboratory findings among the studied group	108
Table (4): The distribution of HBe Ag among the studied group	108
Table (5): Fibrosis stage (according to Metavir score) among the studied group	109
Table (6): Activity grade (according to Metavir score) among the studied group	109
Table (7): Comparison between the liver biopsy results, the fibrosis stage & activity (according to Metavir score), and the fibroscan between the studied group of patients	110
Table (8): Fibroscan measurement & serum markers used among the studied group	111
Table (9): Demographic distribution among different fibrosis stages	112

Table (10): Laboratory findings among different fibrosis stages	113
Table (11): Fibroscan measurement and serum markers among different fibrosis stages	114
Table (12): The serum markers among patients with early versus advanced fibrosis among the studied group	115
Table (13): Comparison of the sensitivity & specificity at the different cut off values according the ROC of the APRI score in the advanced fibrosis	119
Table (14): Comparison of the sensitivity & specificity at the different cut off values according the ROC of the FIB4 score in the advanced fibrosis	121
Table (15): Comparison of the sensitivity & specificity at the different cut off values according the ROC of the fibroαscore in the advanced fibrosis	123
Table (16): Comparison of the sensitivity & specificity at the different cut off values according the ROC of the fibroscan in the advanced fibrosis	125
Table (17): Evaluating APRI "at cut off point=0.36" in detecting advanced fibrosis	126
Table (18): Agreement between APRI and fibrosis stages	126

Table (19): Agreement between fibroscan score and fibrosis stages	127
Table (20): Correlation between different serum markers and other variables among the studied group	128

List of figures

(1) Figures in the review:

Subject	Page no.
Figure (1): Prevalence of chronic infection with	
hepatitis B virus	6
Figure (2): The HBV life cycle	12
Figure (3): Contributions of activated stellate	
cells and other fibrogenic cell types to hepatic	24
fibrosis	
Figure (4): Pathways of hepatic stellate cell	
activation	28
Figure (5): Comparison of the Knodell, METAVIR, and Ishak hepatic fibrosis staging systems	48
Figure (6): Transient elastography device	56
Figure (7): Technique and probe position of	
fibroscan	59
Figure (8): Algorithm A for detection of	
significant fibrosis in HBV patients.	93
Figure (9): Data appearing on the screen of the fibroscan during examination.	99

(2) Figures in the results:

Subject	Page no.
Figure (1): Distribution of symptoms among the	
studied group	107
Figure (2): Distribution of signs among the	
studied group	107
Figure (3): APRI score among patients with early	116
versus advanced fibrosis among the studied group	110
Figure (4): FIB4 score among patients with early	116
versus advanced fibrosis among the studied group	110
Figure (5): Fibroαscore score among patients with early versus advanced fibrosis among the studied group	117
Figure (6): ROC curve to determine APRI Level in detecting advanced fibrosis	118
Figure (7): ROC curve to determine FIB4 Level in detecting advanced fibrosis	120
Figure (8): ROC curve to determine fibroαscore Level in detecting advanced fibrosis	122
Figure (9): ROC curve to determine fibroscan cut offs in detecting "advanced" fibrosis	124

First and foremost thanks to ALLAH, the most merciful.

I wish to express my deepest appreciation and sincere gratitude to **Prof. Dr. Mohamed Khairy El Naggar,** Prof. of Tropical Medicine, Faculty of Medicine,
Ain Shams University, for his continuous encouragement,
kind supervision, valuable instructions and sincere advice
which have been the main factors to complete this work. It
was a great honor to me to work under his supervision.

Words can never express my deepest gratitude, appreciation and greatest respect to **Prof. Dr. Gamal El Din Esmat Gamil,** prof. of Tropical Medicine, Faculty of Medicine, Cairo University, for his close supervision, continuous guidance, great help and indispensable advice in every step of this work. He has generously devoted much of his valuable time, experience and effort for planning and supervision of this work and for presenting it in an ideal form.

I am also delighted to express my supreme gratitude and everlasting appreciation to **Ass. Prof. Dr. Nadia Abdel Aaty Abdel Kader**, Assistant professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for her keen supervision, great support, endless help and continuous guidance during all stages of this work.

I am also delighted to express my deep gratitude and thanks to all my dear professors and my colleagues in Ain Shams University and in NHTMRI for their help and support and to all patients included in this work and every one made any effort for this work to be a reality.

A special dedication to my family for their never ending care. They were always supporting me and encouraging me to continue and finish this work.

Introduction

Chronic viral hepatitis B is a global public health problem leading to liver fibrosis and ultimately to cirrhosis, decompensated liver disease, and hepatocellular carcinoma (*Stibbe et al.*, 2011).

Approximately one third of the world's population has serological evidence of past or present infection with HBV and 350 million people are chronically infected. HBV- related end stage liver disease or HCC are responsible for over 1 million deaths per year and currently represent 5–10% of cases of liver transplantation (*Patrick et al.*, 2009).

An accurate assessment of liver fibrosis in patients with CHB is mandatory not only in predicting the long-term clinical course but also in determining whether and when to begin antiviral therapy. This is because maintenance of viral suppression can reduce liver-related complications in patients with significant fibrosis to cirrhosis (*Lok and McMahon*, 2007).

Individuals with non-significant fibrosis are not likely to develop advanced fibrosis in the short term, even in the light of long-standing disease, and are typically monitored every 3–5 years. Individuals with significant fibrosis are at increased risk of developing cirrhosis and are usually treated (*Manning and Afdhal*, 2008).

Liver biopsy is still considered the gold standard for assessing liver fibrosis. This procedure is very useful because it provides information about the degree of liver fibrosis, as well as the severity and extent of inflammation. However, it is invasive and can lead to grave complications. Furthermore, its accuracy in

assessing fibrosis is questionable because of sampling errors and intra- and interobserver discrepancies (*Lee et al.*, 2010).

As liver biopsy is an invasive procedure, alternative, simple and non-invasive tests have been developed to reliably assess the stages of liver fibrosis (*Skripenova et al.*, 2007).

Ideally, non-invasive alternatives should be simple, cheap, easy to perform, safe, precise, reproducible and validated externally, and capable of differentiating patients in need of therapy (*Omran et al.*, 2011).

Non-invasive markers can be broadly divided into two major groups: radiological and serum-based markers (*Rajasekhara et al.*, 2010).

Fibroscan is a new, noninvasive approach to evaluate liver fibrosis by measuring liver stiffness. The FibroScan uses an ultrasound-based technique known as transient elastography (TE) to measure the speed of propagation of the shear wave through the liver. The wave is produced by a vibrator which is combined with an ultrasonic transducer probe. Each vibration pulse provides a liver stiffness measurement (LSM) measured in kilo Pascals (kPa) which is used to quantify the stiffness of the liver. The velocity of these waves is directly correlated with liver stiffness. The intra- and inter-observation coefficients of variation are 3.2% and 3.3%, respectively, indicating very good reproducibility. Recently, the measurement of liver stiffness by TE has been shown to be an accurate predictor of histological fibrosis in patients with various etiologies of liver disease (*Marcellin et al.*, 2009).