Vaginal Microbiota in Preterm Labour with Intact Membranes

Thesis

Submitted for partial fulfillment of master degree in Obstetrics and Gynecology

By

Hala Mokhtar Mohamed

MB.B.ch. (ALEX University, 2002) Resident obs. & gyn. Abo Hommos central Hospital El Behera Government

Under Supervision of

Dr. Sherif Abd-Elhamid

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Mohamed Osama Taha

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Safia Hamed El-Abde

Lecturer of Medical Microbiology and Immunology
Faculty of Medicine - Ain Shams University
Faculty of Medicine
Ain Shams University
CAIRO - 2013

I wish to express my deep appreciation and sincere gratitude to

Prof. Dr. Sherif Abd-Elhamid Prof. of Obstetrics and Gynaecology, Ain Shams University, who suggested this subject for reviewing and for his supervision, continuous help and patience. It was a great honor to me to work under his supervision.

I wish to express my sincere thanks and deepest gratitude to

Dr. Mohamed Osama Taha Lecturer of Obstetrics and Gynaecology, Ain Shams University for his eminent guidance, encouragement and revision throughout the work.

Also, I would like to express my sincere thanks and deep gratitude to **Dr. Safia Hamed El-Abde** Lecturer of Medical Microbiology and Immunology, Ain Shams University, for her keen and valuable guidance and encouraging for applying some of these techniques.

Last, but no least, I want to thank my family, colleagues and friends that without their help this work could not have been completed.

LIST OF CONTENTS

Page
List of abbreviationsI
List of TablesIII
List of FiguresV
<i>Introduction</i> 1
Aim of the Work4
Review of literature:
• Chapter 1: The vagina 5
• Chapter 2: Preterm labor
• Chapter 3:Infection and Preterm labor
Subject and methods
Results
Discussion
Summary
Conclusion
Recommendation
References
Arabic summary

LIST OF ABBREVIATIONS

ACC	Amsel's composite criteria
AV	Aerobic vaginitis
AVF	Abnormal vaginal flora
BV	Bacterial vaginosis
C trachomatis	Chlamydia trachomatis
C. perfrengiens	Clostridium perfrengiens
C. sporogenes	Clostridium sporogenes
CIN	Cervical intraepithelial neoplasia
CRH	corticotropin- releasing hormone
E. coli	Escherichia coli a
G V	Gardnella Vaginalis
GBS	Group B Streptococcus
gest age	gestational age
GPAC	Gram-positive anaerobic cocci
HIE	Hypoxic-ischemic encephalopathy
HPF	high-power field
HUAM	Home uterine activity monitoring
IQR	Interquartile range
IVF	In vitro fertilization
LBG	Lactobacillary Grade
LMP	Last menstrual period
MAFP	Maternal alpha fetoprotein
МН	Mycoplasma hominis
N. gonorrhea	Nisseria gonorrhea

N. meningitis	Nisseria meningitis
NBM	Nugent's Gram stain evaluation of bacterial morphotypes
- ,	
NSAID	nonsteroidal anti-inflammatory drug.
17 OHP-C	17 a-hydroxy progesterone Caproate
P4	Endogenous progesterone
PCR	Polymerase chain reaction
PDA	patent ductus arteriosus
pН	Power of hydrogen
PIGFBP-1	Phosphorylated insulin like growth factor binding protein-1
PROM	Prelabor Rupture Of Membrane
РТВ	Preterm Birth
PTL	Pre Term Labor
RDS	Respiratory distress syndrome
ROP	Retinopathy of prematurity
S. aureus	Staphylococcus aureus
SD	Standard deviation
spp.	species
TSST-1	Toxic-shock syndrome toxin-1
UU	Ureaplasma urealyticum
VC	Vaginal Candidiasis

LIST OF TABLES

Table	Title	Page
No.	Titte	ruge
	List of Tables of Review	
Table 1	Risk Factors for Bacterial Vaginosis	16
Table 2	Flora in bacterial Vaginosis	16
	List of Tables of Results	
Table 1	Description of personal and obstetric characteristics among women with preterm labor (cases) of women participated in the study	77
Table 2	Description of personal and obstetric characteristics among women were not with preterm labor (controls) of women participated in the study	79
Table 3	Comparison between cases and controls as regard personal and obstetric characteristics	81
Table 4	Comparison between cases and controls as regard obstetric history	82
Table 5	Comparison between early PTL and late PTL cases as regard age and parity	83
Table 6	Comparison between early PTL and late PTL cases as regard obstetric history	84
Table 7	Description of Lactobacellary grade (LBG), Coccoid aerobic flora and other microorganisms isolated from cases (women with PTL)	85
Table 8	Description of Lactobacellary grade (LBG), Coccoid aerobic flora and other microorganisms isolated from controls	87

Table No.	Title	Page
Table 9	Comparison between cases and controls regarding Lactobacellary grade, Coccoid aerobic flora and other microorganisms isolated	89
Table 10	Comparison between women with early PTL and women with late PTL cases as regard Lactobacellary grade, Coccoid aerobic flora and other microorganisms isolated:	93

LIST OF FIGURES

Fig. No.	Title	Page
Figure 1	Clue cell (arrow) as recognized by cytologic review. Dark, velvety coat of coccobacilli adhere to the squamous epithelial cytoplasm (Pap stain, ×600)	18
Figure 2	Aerobic vaginitis	23
Figure 3	Major etiologic factors of preterm birth.	35
Figure 4	Transvaginal ultrasonography of a cervix demonstrating funneling of the amniotic membrane protruding into the internal os (long arrow) and shortened cervical length of 1.5 cm (short arrow).	42
Figure 5	The Gaspak: The jar contains inoculated plates	72
Figure 6	Technique for picking an isolated bacterial colony using a straight inoculating wire.	72
Figure 7	Technique for preparing a smear for Gram stain. A portion of the bacterial colony to be studied is sampled with an inoculation loop or needle and emulsified in a drop of water or saline on an 3X 1-inch glass microscope slide.	73
Figure 8	Gram-stained smear of a normal vaginal specimen. Note the presence of the large epithelial cells and the gram-positive bacilli that correspond to the "Lactobacillus morphotype".	73

	List of figures of Results	
Figure 1	Distribution of the studied cases according to the parity	78
Figure 2	Distribution of the studied control group according to the parity	80
Figure 3	Distribution of lactobacillary grade (LBC) among the studied cases	86
Figure 4	show the distribution of Lactobacellary grade (LBG), Coccoid aerobic flora and other microorganisms isolated among cases (women with PTL)	86
Figure 5	Distribution of lactobacillary grade (LBC) among the studied controls	88
Figure 6	distribution of Lactobacellary grade (LBG), Coccoid aerobic flora and other microorganisms isolated among controls (women with out PTL).	88
Figure 7	The relation between cases and controls regarding Coccoid aerobic flora infection	91
Figure 8	The relation between cases and controls regarding staphylococci infection	91
Figure 9	The relation between cases and controls regarding enterobacteria.	92
Figure 10	The relation between cases and controls regarding Candida spices.	92

Figure 11	The relation between cases with early PTL and cases with late PTL regarding klebsiella spices	95
Figure 12	The relation between cases with early PTL and cases with late PTL regarding ureaplasma.	95

Introduction

Several hormonal changes are produced during pregnancy that can increasingly predispose to infections of the lower genital tract (*Yadkin*, 2005).

These infections are associated with a great number of gynecologic and obstetric complications, such as preterm birth, premature rupture of the membranes, chorioamnionitis, endometritis, postpartum infections, inflammatory pelvic disease, intrauterine growth retardation, and low birth weight (*De Seta et al.*, 2005).

Preterm labor (PTL) is defined as contractions that cause cervical changes before 37 weeks of gestation (*Cootauco and Althaus*, 2007).

More than 12% of infants born in the USA are preterm (Martin et al., 2010).

To date, **causes of prematurity** can be found in less than one half of all cases (*Mc Gregory and French*, 2000).

The search for causes of preterm birth has had limited success, with no strong, modifiable determinants found thus far (*Behrman et al.*, 2007).

There are a number of powerful predictors of preterm birth, including multifetal gestation, prior preterm birth, African-American ethnicity, mid-pregnancy fetal fibronectin, and short cervical length (*Behrman et al.*, 2007).

Smoking, low prepregnancy weight, and inadequate gestational weight gain are the only established modifiable predictors, each associated with a modestly increased risk (*Berkowitz et al.*, 2010).

The failure to identify individually strong, modifiable causes of preterm birth is not due to insufficient research, given numerous studies focused on psychosocial stress (*Behrman et al.*, 2007).

PTL (preterm labor) is the major cause of perinatal and neonatal mortality and morbidity in the developed world (*Fellman et al.*, 2009).

In addition, a growing body of evidence suggests that maternal genital tract infection is associated with preterm labor. Such evidence is based

On studies showing recovery of organisms from the amniotic fluid of women in preterm labor (*Romero et al.*, 2002), *histological* evidence of choir ammonites.

In normal conditions, vaginal microflora comprises lactobacilli that exert a crucial role in maintaining the natural

healthy balance of the vaginal flora and in protecting the women from genital infections. Through the production of lactic acid, lactobacilli lower vaginal PH and help prevent the development of potentially pathogenic microorganisms (*Witkin et al.*, 2007).

During pregnancy, normal vaginal microbiota, which consists primarily of lactobacilli, is substituted by anaerobic bacteria such as *Gardnerella vaginalis* and *Mycoplasma homini*, resulting in a significant reduction in lactobacilli and increased pH (greater than 4.5) (*Donders*, 2010).

Reported studies in general have focused on a single organism without simultaneously investigating other organisms present, or interactions between them. In addition, many of these studies have not taken account of other confounding clinical, demographic and social variables that may predispose to preterm labor.

For that reason, a comprehensive prospective study is needed to investigate all possible associations between vaginal carriage of different organisms and preterm labor.

Aim of the Work

The aim of this study is to study the vaginal microbiota in women with preterm labor with intact membranes and determine, whether, the presence of specific vaginal organism is significantly associated with onset of preterm labor.

THE VAGINA

The vagina is a fibromuscular canal that extends from the vulva to the uterus (*Cunningham et al.*, 1994).

The vaginal walls consist of a mucosal layer lined by stratified squamous epithelium, a layer of smooth muscle and an outer adventitial layer. In the relaxed state, the vaginal wall collapses to obliterate the lumen and the vaginal epithelium is thrown up into folds (*Burkitt et al.*, 1993).

Vaginal secretions contain many things, including sweat, sebum, and secretions from Bartholin's and Skene's glands at the vulva, endometrial, and oviductal fluids, cervical mucus, exfoliated cells, and secretions of the vaginal walls themselves, which increase with sexual arousal. A normal physiological discharge is a white or clear, non-offensive discharge that varies with the menstrual cycle (*Spence and Melville*, 2007).

Natural defenses of the vagina

Anatomically, the closure of the anterior and posterior vaginal walls by apposition prevents the ascent of infection and allows the formation of a thin film of acidic vaginal secretions, which is bactericidal. The stratified squamous epithelium lining the vaginal wall is unbroken by glands and has no crypts