EVALUATION OF IMMUNE RESPONDERS IN HUMAN SCHISTOSOMIASIS

A Thesis

Submitted to the Faculty of Science,

Cairo University,

In Partial Fulfillment of the Requirements of the Degree of Master of Science in Zoology

(Immunoparasitology)

By

Ehab Mohammad Mohammad Tantawy

B.Sc. in Zoology-Chemistry

Department of Zoology

Faculty of Science

Cairo University

(2008)

APPROVAL SHEET

Title of the M. Sc. Thesis:

Evaluation of Immune Responders in Human Schistosomiasis.

Name of the Candidate: Ehab Mohammad Mohammad Tantawy.

Supervision Committee:		Signatures:
1- Prof. Dr.	Abdel Hakim Saad Prof. of Immunology Faculty of Science Cairo University	•••••••••••••••••••••••••••••••••••••••
2- Prof. Dr.	Maged Moustafa Al-Sherbiny Prof. of Immunology Faculty of Science Cairo University	••••••••••
3- Prof. Dr.	Ahmed Mohammed Osman Prof. of Immunology Faculty of Science Cairo University	•••••••••••••••••••••••••••••••••••••••

Head of Zoology Department Faculty of Science, Cairo University

Prof. Dr. Kawthar Said

FACULTY OF SCIENCE

TO WHOM IT MAY CONCERN

This is to certify that **Mr. Ehab Mohammad Mohammad Tantawy** has attended and passed successfully the following post graduate courses as a partial fulfillment of the requirements of the degree of master of science. (**Immunology and Parasitology, 2001**).

1. Immunochemistry. **12.** Neurophysiology.

2. Advanced Immunology. **13.** Comparative Immunology.

3. Applied Immunology. **14.** Evolution of Invertebrates.

4. Immunoparasitology. **15.** Genetics.

5. Radiobiology. **16.** Functional Morphology of Nematodes.

6. Immunodiagnosis. **17.** Helminthology.

7. Fine structures of Parasites. **18.** Biostatistics.

8. Molecular Biology. **19.** Diagnosis of Protozoa.

9. Biochemistry of Parasites. **20.** Computer Science.

10. Electron Microscope. **21.** German Language.

11. Pollution.

This Certificate is issued at his own request.

Date of birth: 1 / 10 / 1977

Place of birth: El-Fayoum.

Controller

Head of Zoology Department

Prof. Dr. Mona al Sharkawy Prof. Dr. Kawthar Said

ACKNOWLEDGMENT

First of all I would like to thank my merciful Allah for completion of this work and sincere thanks and gratitude are aimed to acknowledge all those who helped this thesis attain its present form.

I would like also to express my sincere appreciation and deepest gratitude to **Prof. Dr. Abdel Hakim Saad,** Professor of Immunology, Faculty of Science, Cairo University, for his generous help, supervision, his gaudiness and kind help. Also, I would greatly appreciate the unfailing enthusiasm of the supervision during the writing and checking the final manuscript.

I would like also to express my sincere appreciation and deepest gratitude to **Prof. Dr. Maged Moustafa Al-Sherbiny,** Professor of Immunology, Faculty of Science, Cairo University, for giving me the chance to undertake the subject of this thesis, also for his continuous encouragement, valuable instruction, advices and direct supervision of this work.

I would like also to express my sincere appreciation and deepest gratitude to **Prof. Dr. Ahmed Mohammed Osman,** Professor of Immunology, Faculty of Science, Cairo University, for his generous help, sincere effort, and continuous encouragement in supervising time research.

List of abbreviations

aa : amino acid

Ab : Antibody

Ag : Antigen

BFA : Brefeldin A

BSA : Bovine Serum Albumin

CD₄⁺ : Cluster of Differentiation 4

CD₈⁺ : Cluster of Differentiation 8

cpm : Counts Per Minute

DNA : Deoxyribonucleic Acid

ELISA : Enzyme Linked Immunosorbent Assay

ERDC : Egyptian Reference Diagnostic Center

Fc : Fragment Crystallizable

FITC : Fluorescein Isothiocynate

FSC : Forward Scatter

HCl : Hydrochloric Acid

hr : Hour

IFN- γ : Interferon- γ

Ig : Immunoglobulin

IL-10 : Interleukin-10

IL-2 : Interleukin-2

IL-4 : Interleukin-4

IL-5 : Interleukin-5

kDa : Kilo Dalton

min : Minute

mL : Milliliter

MoAb : Monoclonal Antibodies

mRNA : messenger Ribonucleic Acid

NK : Natural Killer

nm : Nanometer

NP : Native Protein

N-Para : Native Paramyosin

O/N : Overnight

List of Abbreviations

OD : Optical Density

p.i. Post-Infection

Para : Paramyosin

PBMCs : Peripheral Blood Mononuclear Cells

PBS : Phosphate Buffered Saline

PCR : Polymerase Chain Reaction

PE : Phycoerythrin

PerCp : Peridin chlorophyll Protein

pg : Picogram

PHA : Phytohemagglutinin

PI : Propidium Iodide

PMTs : Photomultiplier Tubes

R : Resistance

RP : Recombinant Protein

R-Para : Recombinant Paramyosin

rpm : Round Per Minute

S : Susceptible

SAWA : Soluble Adult Worm Antigen

SD : Standard Deviation

SDS-PAGE: Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis

SWAP : Soluble Worm Antigen Preparation

t : Time

TcR : T cell receptor

Th0 : T helper 0
Th1 : T helper 1

Th2 : T helper 2

UV : Ultraviolet

WBC : White Blood Cells

WHO : World Health Organization

wks : Weeks

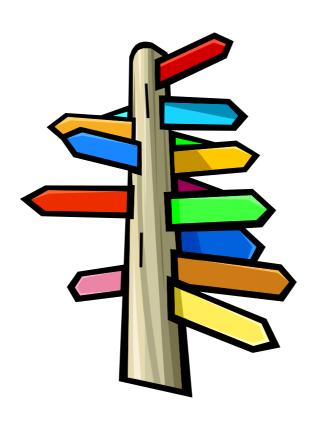
- **Fig (1):** Distribution of Schistosomiasis.
- **Fig (2):** Life cycle of *Schistosoma* spp..
- **Fig (3):** T cell cytokine environment in response to *Schistosoma* mansoni infection.
- **Fig (4):** The role of cytokines in the induction and function of regulatory T-cells.
- **Fig (5):** Assay procedure summary describing the staining of intracellular cytokines.
- **Fig (6):** *In vitro* proliferation in response to different schistosome Ags.

 Bars showing minimum, maximum and mean of stimulation index (SI= cpm of stimulated culture/cpm of un-stimulated culture).
- **Fig (7):** IL-5 response to different schistosome Ag Results expressed as pg/ml, R: Resistant, S: Susceptible.
- **Fig (8):** IFN-γ response to different schistosome Ag Results expressed as pg/ml, R: Resistant, S: Susceptible.
- **Fig (9):** IL-10 response to different schistosome Ag Results expressed as pg/ml, R: Resistant, S: Susceptible.
- **Fig (10):** Scatterplot diagram showing correlation between log transformed IL-5, IL-10 and IFN-γ cytokine levels (pg/ml) in response to N-Para, R-Para and SAWA.

- **Fig (11):** Scatterplot diagram showing correlation between log transformed IL-5, IL-10 and IFN-γ cytokine levels (pg/ml) in response to N-Para, R-Para and SAWA.
- **Fig (12):** Scatterplot diagram showing correlation between log transformed IL-5, IL-10 and IFN-γ cytokine levels (pg/ml) in response to N-Para, R-Para and SAWA.
- Fig (13): IFN-γ producing cells (%) from schistosomiasis infected patients following stimulation with SAWA. R=Resistant; S=Susceptible.
- Fig. (14) IFN-γ producing cells (%) from schistosomiasis infected patients following stimulation with N-Para. R=Resistant; S=Susceptible.
- Fig. (15) IFN-γ producing cells (%) from schistosomiasis infected patients following stimulation with R-Para. R=Resistant; S=Susceptible.
- Fig. (16) IFN-γ producing cells (%) from schistosomiasis infected patients following stimulation with PHA. R=Resistant; S=Susceptible.

Table of Contents

Contents	Page
Abstract	
i. Introduction and Aim of Work	1-4
ii. Review of Literature	5-29
iii. Materials and Methods	30-43
iv. Results	44-64
vi. Discussion	65-78
vii. English Summary	79-80
viii. References	81-100



ABSTRACT

Cellular immune responses to Schistosoma mansoni recombinant and native antigens were investigated in a defined study population of 64 individuals in Egypt, where data collected from a 2-year observation of exposure, infection and reinfection pattern were used to categorically classify putative resistant (R) and susceptible (S) individuals. Using peripheral blood mononuclear cells (PBMCs) of individuals enrolled in the study, *in vitro* lymphocyte proliferation and cytokine (IL-5, IL-10 and IFN-y) production in response to defined recombinant and native paramyosin antigens (R-Para and N-Para, respectively) and native soluble adult worm antigen preparation (SAWA) were measured. Cellular response to the R-Para and SAWA Ag suggest that the Th1 type of response appears to be important in predicting resistance in this population. Of the recombinant Ag tested, R-Para induced significant levels of IFN-y. The production of IL-10, a Th2-type cytokine was strongly implicated in immune regulation. Of importance was the evidence found for SAWA and R-Para induced IFN-y responses in predicting resistance. The association was significant even after the effect of infection which was accounted for in a multivariate analysis. This implies that other than acquired immunity to infection, some immunological state-dependent host factors may also play an important role in the overall changes of reinfection patterns seen in Schistosomiasis mansoni in this Egyptian population.

Keywords: *Schistosoma mansoni*; Schistosomiasis; "Resistant" and "Susceptible" individuals; Cellular immune responses; Peripheral blood mononuclear cells; Cell proliferation; Cytokines; IL-5; IL-10; IFN-γ; Recombinant and native paramyosin.

INTRODUCTION AND AIM OF THE WORK

Introduction and Aim of the Work

Schistosomiasis, also known as bilharzia, after Theodor Bilharz who first identified the parasite in Egypt in 1851, is caused by parasitic trematode worms (flukes) of the genus Schistosoma (Hagan and Sharaf, 2003). Schistosomiasis is an important parasitic disease that affects more than 200 million people worldwide causing more than 250 000 deaths per year (van der Werf et al., 2003). The pathology characteristic of this disease is a granulomatous reaction around parasite eggs within the liver and other organ (Boros, 1989). Currently, schistosomiasis control strategy is mainly based on the treatment of infected individuals by chemotherapy with safe and effective drugs (Harder, 2002). In spite of decades of chemotherapy, the number of infected people remains almost the same (Bergquist, 1995). Large extension of endemic areas and constant reinfection of individuals together with poor sanitary conditions in tropical countries requires other controlling strategies besides drug treatment (Bergquist, 1998). Therefore, vaccination as a way to control schistosomiasis would contribute enormously to disease eradication. In the case of schistosomiasis, a sterilizing vaccine, although desirable, is not essential. Since schistosomes do not multiply within the final host, a vaccine that induces even a partial reduction in worm burdens could considerably reduce pathology, limit parasite transmission and be less expensive than repetitive drug treatment (Chitsulo et al., 2004). The best long-term strategy to

Introduction and Aim of The Work

schistosomiasis is thought to be the immunization with an antischistosomiasis vaccine (Bergquist, 2002). Many world health agencies agree that the development of an antischistosomiasis vaccine should be sought. Several studies are in progress in this field, testing different antigens (Ag) of the parasite and different vaccination strategy (Chitsulo et al., 2004).

Six schistosome Ags have been selected by the World Health Organization (WHO) as candidates to compose a subunit vaccine against schistosomiasis (Bergquist, 1995). One of these Ags is paramyosin, a filamentous, α-helical, coiled-coil protein of approximately 100 kDa that is present in the muscle of invertebrates, including Schistosoma mansoni (Bergquist, 1995; Pearce et al., 1988). Paramyosin was identified as the major Ag recognized by sera of mice vaccinated intradermally with an S. mansoni adult parasite extract (Lanar et al., 1986). Purified paramyosin used in mice immunization conferred significant resistance against challenge infection (Bergquist, 1995; Pearce et al., 1988). The resistance induced by immunization involved interferon (IFN)-y production by stimulated T cells, suggesting that during challenge of vaccinated hosts paramyosin may elicit a protective T cell response as a result of its release from migrating parasite larvae (Bergquist, 1995). It thus appears that both

Introduction and Aim of The Work

cellular and humoral immune responses are important mechanisms in the protective immunity induced by paramyosin immunization.

Studies of human immune responses to paramyosin support the potential of this protein as a vaccine candidate. *S. mansoni* paramyosin is strongly recognized by sera of individuals naturally resistant to infection and it also induced high levels of IFN-γ production by peripheral blood mononuclear cells (PBMC) from these individuals (**Ribeiro de Jesus** *et al.*, **2000**; **Correa-Oliveira** *et al.*, **1989**). Paramyosin also induced significant lymphocyte proliferation and interleukin (IL-2) and IL-5 production in individuals resistant to *S. mansoni* reinfection (**Al-Sherbiny** *et al.*, **2003**). These results suggest the involvement of paramyosin in natural resistance and in resistance to reinfection against *Schistosoma mansoni*.

The identification of immunodominant epitopes within vaccine candidate Ags is extremely important, not only because it makes immunization possible, excluding cross reactivity and the accompanying risk of autoimmunity or allergy, but also because it allows the construction of vaccines with relevant peptides from different candidate Ags, improving the chance of achieving high levels of protection.