

Molecular Characterization of Tumor Necrosis Factor-Alpha Gene in Bronchial Asthmatic Children

Thesis

Submitted for the Fulfillment of PhD in Childhood Studies Child Health and Nutrition Department of Medical Studies

By
Manal Fawzy Zekry
M.B., B.CH- M.Sc. in Pediatrics

Supervised by

Prof. Dr. Ehab M. Eid Pr Professor of Public Health Institute of Postgraduate Childhood Studies Ain Shams University

Prof. Dr. Howaida H. Elgebaly

Professor of Pediatrics

Institute of Postgraduate Childhood Studies

Ain Shams University

Prof. Dr. Nasser A. Elhawary
Professor of Genetics
Faculty of Medicine,
Medical Genetics Center
Ain Shams University

Institute of Postgraduate Childhood Studied Ain Shams University 2012

First and above all, I pray thanking God for his blessing and giving me the effort to complete and achieve this work.

I would like to express my deep gratitude, thanks, and respect to **Prof. Dr. Ehab M. Eid** Professor of Public Health, Institute of Postgraduate Childhood Studies, Ain Shams University for granting me the privilege of working under his supervision and for his great encouragement and unfailing tender advice throughout this work and throughout my career.

I would like to express my thanks and admiration to **Prof. Dr. Howaida Elgebaly,** Professor of Pediatrics, Institute of Postgraduate Childhood Studies, Ain Shams University for her supervision, suggesting this valuable point of research, continues encouragement, beneficial remarks and kind advises during the whole work.

I wish to express my deep thanks and utmost gratitude to **Dr.**Nasser A. Elhawary, Professor of Genetics, Faculty of Medicine,
Medical Genetics Center, Ain Shams University for his guidance,
advice and fruitful suggestions without which this work would have
never been accomplished.

Manal Fawzy

التوصيف الجزيئي لجين معامل التنكرز الورمي ألفا في الأطفال المصابين بالربو الشعبي

ر سالــة مقدمة للحصول على درجة دكتوراه الفلسفة في دراسات الطفولية قسم الدر اسات الطبية

> مقدمــة من الطبيبة/ منال فوزي ذكرى ماجستير طب الأطفال

> > تحت إشراف

الجبالي

أستاذ طب الأطفال قسم الدرسات الطبية للأطفال معهد الدراسات العليا للطفولة

أد/إيهاب محمد عيد أد/ هويدا حسني

أستاذ الصحة العامة قسم الدرسات الطبية للأطفال معهد الدراسات العليا للطفو لة

د/ ناصر عطية الهواري أستاذ الوراثة كلية الطب مركز الوراثة الطبية جامعة عين شمس

معهد الدرسات العليا للطفولة جامعة عين شمس

List of Contents

Subject	Page
List of Abbreviations	Ι
List of Tables	IV
List of Figures	VII
Introduction	1
Aim of the Study	4
Review of Literature Chapter (1): Pediatric Bronchial Asthma	5
Chapter (2): Tumour Necrosis Factor	72
Chapter (3): Genetic Polymorphisms in Asthma	90
Chapter (4): Candidate Genes for Asthma and Related Phenotypes	98
Subjects and Methods	101
Results	112
Discussion	130
Summary and Conclusion	141
Recommendations	144

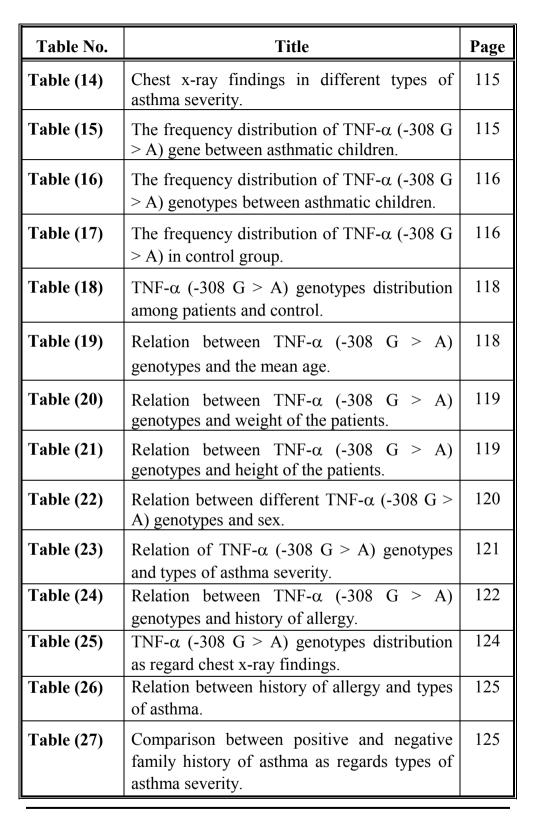
References	145
Arabic Summary	1

List of Abbreviations

ALI	Acute lung injury
AP-1	Activator protein one
ARDS	Acute respiratory disease syndrome
ASK1	Apoptosin single regulating kinase 1
BHR	Bronchial hyper responsiveness
BT	Bronchial thermoplasty
СВ	Chronic brouchitis
CFC	Chlorofluorocarbon
COPD	Chronic obstraction pulmonary disease
CSGA	Collaborative study on the genetics of asthma
CTLA4	Cytotoxic T lymphocyte antigen-4
DPI	Dry-powder inhaler
EPR-3	Expert panel report III
FADD	Fas-associated death domain
FEF ₂₅₋₇₅	Forced expiratory flow over 25-75% of the FVC
FeNo	Fractional exhaled nitric oxide
FEV1	Forced expiratory volume in one second
FRC	Functional residual capacity
FVC	Forced vital capacity
GER	Gastroesophageal reflux
GINA	Global initiative for asthma
GM-CSF	Granulocyte-macrophage colony-stimulating factor
HFA	Hydrofluoroalkane
ICAM-1	Intracelleular adhesion molecule one

I

ICS	Inhaled corticosteroids
IgE	Immunoglobulin E
IL-4	Interleukin 4
IL4R	Interleukin 4 receptor antagonist
IL-5	Interleukin 5
ILIRN	Interleukin one receptor antagonist
LPS	Lypopoly saccharide
LTA	Lymphotoxin-a
LTC4S	Leukotriene C4 synthase
MAPK	Mitogen-activated protein kinase
MDCs	Macrophage-derived chemokines
MDI	Metered dose inhaler
MHC	Major histocombtability complex
MIP	Macrophage inflammatory protein
NF-KB	Nuclear factor kappa B
NHLB	National heart, lung and blood institute of health
NIH	National Institutes of Health
NOS1	Nitric oxide synthase 1 gene
PDGF-B	Platelet drived growth factor-B
PEFR	Peak expiratory flow rate
RAGE	Receptor for advanced glycation end products
RIP	Receptor-interacting protein
RSV	Respiratory syncytial virus
RV	Residual volume
SNPs	Single-necroseotide polymorphisms
SPINK5	Serine protease inhibitor kazal type 5


List of Abbreviations 📚

STA-6	Singal transducer and activator of transcription 6
	gene
TACE	TNF alpha converting enzyme
TAKCs	Thymus and activation regulated chemokines
TGF	Transforming growth factor
Th 2	T-helper type 2
TLC	Total lung capacity
TNF-α	Tumor necrosis factors-alpha
TNF-β	Tumor necrosis factors-beta
TNF-R1	TNF-receptor one
TNF-R2	TNF-receptor two
TRADD	TNF-receptor associated death domain
URTI	Upper respiratory tract infection
VCAM-1	Vascular cell adhesion molecule one

List of Tables

Table No.	Title	Page
Table (1)	List of cytokines incriminated in asthma.	25
Table (2)	The GINA guidelines classification of asthma severity.	47
Table (3)	Stepwise Approach for Managing Asthma in Adults and Children Older Than 5 Years of Age.	48
Table (4)	Quick reliever medications.	50
Table (5)	Goals of Therapy: Asthma Control.	50
Table (6)	Usual Dosages for Long-Term-Control Medications.	51
Table (7)	Long-Term Management of Asthma in Children.	52
Table (8)	Estimated Comparative Daily Dosages of Inhaled Corticosteroids in Children 12 Years and Younger.	53
Table (9)	The deomographic characteristics of patients and control .	112
Table (10)	The frequency of symptoms and signs of asthmatic patients.	113
Table (11)	Classification of the studied group according to GINA guideline 2006.	113
Table (12)	Comparison between sex of different types of asthma severity.	114
Table (13)	The radiological findings in chest x-ray in asthmatic patients.	114

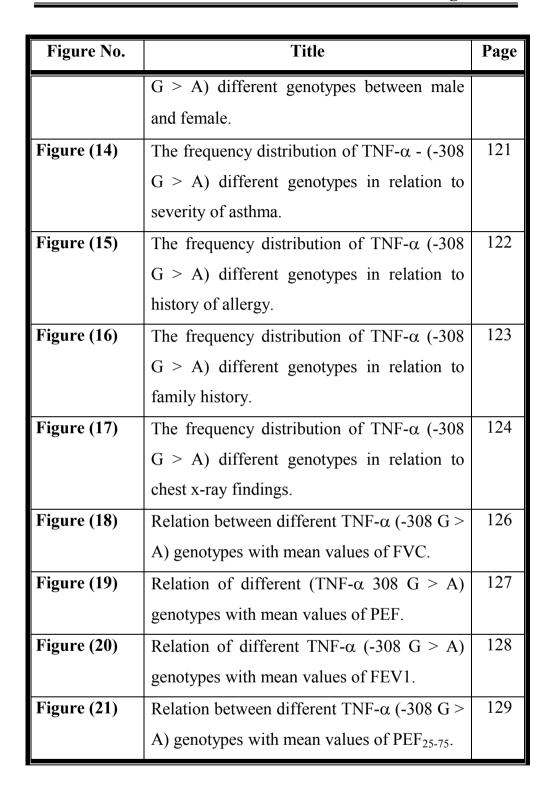


Table No.	Title	Page
Table (28)	Comparison between asthmatic subgroups regarding the value of FVC, PEF, FEV1, PEF_{25-75} .	125
Table (29)	Relation between different TNF-α (-308 G > A) genotypes with mean values of FVC.	126
Table (30)	Relation of different (TNF- α 308 G > A) genotypes with mean values of PEF.	127
Table (31)	Relation of different TNF- α (-308 G > A) genotypes with mean values of FEV1.	128
Table (32)	Relation between different TNF- α (-308 G > A) genotypes with mean values of PEF ₂₅₋₇₅ .	129

List of Figures

Figure No.	Title	Page
Figure (1)	Numerous factors.	8
Figure (2)	Factors limiting airflow in acute and	14
	persistent asthma.	
Figure (3)	Inhaled antigen activates mast cells and Th2	20
	cells in the airway.	İ
Figure (4)	Gene map and SNPs on chromosome 6p21.	74
Figure (5)	TNF-α signaling pathways.	76
Figure (6)	Schematic diagram of the mechanism of	82
	action of TNF-α.	
Figure (7)	Schematic diagram of the effects of TNF-α	84
	on various pulmonary tissues.	
Figure (8)	Role of TNF-α in the pathogenesis of	85
	chronic inflammatory disorders of the	
	airways.	
Figure (9)	Gene map and SNPs on chromosome 6p21.	110
Figure (10)	Gel electrophoresis pattern of the TNF-α	110
	-308 G > A polymorphism.	
Figure (11)	The frequency distribution of TNF- α (-308	117
	G > A) different genotypes in cases.	
Figure (12)	The frequency distribution of TNF- α (-308	117
	G > A) different genotypes in control.	
Figure (13)	The frequency distribution of TNF- α (-308)	120

Introduction

Asthma (MIM # 600807) is a common respiratory disease characterized by variable air flow obstruction, inflammation of the airways and bronchial hyper responsiveness (BHR). Asthma is recognized as T-helper type 2 (Th2) disease with a particular profile of cytokine release, including interleukin 4 (IL4) and interleukin 5 (IL5). Increasing evidence indicates that cytokines are also associated with inflammatory response that characterizes human asthma. One such mediator is tumor necrosis factor-alpha (TNF- α) (*Thomas et al., 1996*) that has been shown to induce airway hyper reactivity (*Lin et al., 2002*).

The genetic evidence in the etiology of asthma, the mode of inheritance is complex and not yet fully understood (Ober and Moffatt, 2000). It is likely that several genes, each with moderate-to-major effects, act together with environmental exposures to determine an individual's overall risk of development of asthma. The Collaborative Study on the Genetics of Asthma (CSGA) is a multicenter collaborative study supported by the National Heart, Lung and Blood Institute of the National Institutes of Health (NHLBI/NIH), whose purpose is to identify important loci that contribute to the development of asthma and asthma-associated phenotypes. Different frequencies of asthma-susceptibility genes in each ethnic

population provided the strongest evidence for linkage at 6p21 in the European American population, at 11q21 in the African American population, and at 1p32 in the Hispanic population (Xu et al., 2001). Further evidence for linkage has been investigated at 5q31, 8p23, 12q22, and 15q13 loci (Noguchi et al., 1997; Gao et al., 2006).

TNFA and TNFB (namely as lymhotoxin- α , LTA) genes belongs to TNF gene super family located with in human major histocomtability complex (MHC) (6p21) in a region repeatedly linked to asthma *(Shin et al., 2004)*. More common polymorphisms in the promoter of TNFA (-1031C>T, -863C>A, and -857C>T) have been identified *(Moffatt and Cookson, 1997)*. The TNF position -308 and LTA polymorphisms have essentially influenced TNF transcription and secretion respectively *(Beghe et al., 2004; Gao et al., 2006)*. A number of independent studies have indicated an association of the TNF α -308G>A promoter polymorphism with the risk of asthma *(Moffatt and Cookson, 1997; Shin et al., 2004; Aoki et al., 2006)*.

It is noteworthy that little work has been made concerning the association between one single nucleotide polymorphism (SNP; LTA +252A>G) (*Elhawary and Kamal*, 2006) and the asthmatic cases. In this study, we will performed