RISK MITIGATION AND OPTIMIZATION USE OF RUNOFF WATER IN SOME WADIS IN THE EASTERN DESERT OF EGYPT

Submitted By

Mona Mohamed Hamdy Mostafa Sayed Ahmed

B.Sc. Engineering (Mechanical Engineering), Faculty of Engineering,

American University in Cairo, 1990

Master in Engineering, Faculty of Engineering, American University in Cairo, 2004

A thesis submitted in Partial Fulfilment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

2018

APPROVAL SHEET RISK MITIGATION AND OPTIMIZATION USE OF RUNOFF WATER IN SOME WADIS IN THE EASTERN DESERT OF EGYPT

Submitted By

Mona Mohamed Hamdy Mostafa Sayed Ahmed

B.Sc. Engineering (Mechanical Engineering), Faculty of Engineering,
American University in Cairo, 1990
Master in Engineering, Faculty of Engineering, American University in Cairo, 2004

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences

This thesis Towards a Doctor of Philosophy Degree in

Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Abdel Kawi Ahmed Mokhtar Khalifa

Emeritus Prof. of Hydraulics and Irrigation

Faculty of Engineering

Ain Shams University

2-Prof. Dr. Ashraf Ramadan Abdullah Shabana

Prof. of Hydrogeology

Desert Research Center

3-Prof. Dr. Mahmoud Mohamed Abu-El-Nasr

Prof. of Mechanical Power Engineering

Faculty of Engineering

Ain Shams University

4-Prof. Dr. Sameh Attiya Mohamed Sakr

Prof. and Director of Research Institute for Groundwater

Ministry of Water Resources and Irrigation

5-Prof. Dr. Yehia Lotfy Ismail

Prof. and Head of Hydrology Department

Desert Research Center

RISK MITIGATION AND OPTIMIZATION USE OF

RUNOFF WATER IN SOME WADIS IN THE

EASTERN DESERT OF EGYPT

Submitted By

Mona Mohamed Hamdy Mostafa Sayed Ahmed

B.Sc. Engineering (Mechanical Engineering), Faculty of Engineering,
American University in Cairo, 1990
Master in Engineering, Faculty of Engineering, American University in Cairo, 2004

A thesis submitted in Partial Fulfilment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences

Under The Supervision of:

1-Prof. Dr. Mahmoud Mohamed Abu-El-Nasr

Prof. of Mechanical Power Engineering Faculty of Engineering Ain Shams University

2-Prof. Dr. Kamal Farid Saad (Dead)

Prof. of Engineering Hydrology, Department of Environmental Engineering Institute of Environmental Studies & Research Ain Shams University

3-Prof. Dr. Sameh Attiva Mohamed Sakr

Prof. and Director of Research Institute for Groundwater Ministry of Water Resources and Irrigation

4-Prof. Dr. Yehia Lotfy Ismail

Prof. and Head of Hydrology Department Desert Research Centre

5-Dr. Hamdy Ahmed Hussein Abo Taleb

Lecturer, Mechanical Power Engineering Department Faculty of Engineering Ain Shams University

Dedication

To the most precious people in my life
My Father, Hamdy, and My Mother, Salwa,
My Brothers Ahmed, Basem, and Tarek
My beloved Nieces
Aya, Mariam, Ingy, and Malak
To You All
You are my whole world
You are my sweethearts
You are the joy of my life
I Love You All

ACKNOWLEDGEMENTS

Thanks God for blessing me, giving me the motive, strength, and determination to finish this thesis.

My profound gratitude to my esteemed advisors Prof. Mohamed Mahmoud Abu El-Nasr, who helped me a lot, and provided tremendous academic support; Prof. Sameh Attiya Mohamed Sakr, who did not hesitate to offer me any help and data I needed; Prof. Yehia Lotfy Ismail, who did not spare any effort to help me, advised me, and followed me up step by step throughout all stages of my work, and Dr. Hamdy Abu Taleb, who provided an appreciated support.

My deep & sincere thanks to Prof. Dr. Magda Ikram Ebaid for her encouragement, support, guidance, and sincere help, throughout my study in Institute of Environmental Studies & Research, and during the course of this thesis.

My great appreciation, gratitude, and thanks to the distinguished people, in different Association, who so generously contributed to the work presented in this thesis; Eng. Ahmed Abu El-Seoud, Chief Executive Egyptian Environmental Affairs Agency (EEAA); Dr. Hamdy Abd El-Rahman, Director General of Climate, The Egyptian Meteorological Authority (EMA); Dr. Samira Adam, Senior Map Specialist, Director General Rank, Mr. Ahmed Abd El-Moniem, Professor of Geology, Director General Rank, and Dr. George Helmy, Geophysics Specialist, The Egyptian Geological Survey (EGS), The Egyptian Mineral Resources Authority (EMRA); Dr. Nahed Sayed El-Araby, Ministry of Water resources and Irrigation (MWRI). All those esteemed people were a great help for me. They did not hesitate to help me when I needed them.

My great gratitude to the soul of Prof. Kamal Farid Saad, who inspired me to do this thesis, his encouraging words are still ringing in my ears.

My deep thanks to Dr. Sayed Abu El-Ela, Assuit University, for his appreciated help.

My special thanks to all the personnel in The Institute of Environmental Studies & Research, who facilitated all procedures necessary to finalize this work. My profound love, respect, and dedication to my family; their love, devotion,

encouragement, and sincere prayers were the main reason to finish this work.

ABSTRACT

Egypt is currently suffering from water shortages and this shortage is expected to increase significantly as a result of increased population growth, agricultural activities, industrial activities, demands' needs of development and new projects.

The main source of water in Egypt is the Nile River. Since Egypt's share of water from the Nile is might be affected by the construction of Renaissance Dam of Ethiopia and other dams in Ethiopia and other Nile Basin countries. Other water resources: groundwater, rainfall, etc. not exploited optimally, while every drop of water should be exploited and maximized.

Although the Government has begun water recycling and desalination projects to overcome water shortages, the amount of water is still insufficient. As a result, Egypt should consider exploiting any possible water resources that can contribute to provide any amount of water, no matter this amount is small or large. Therefore, it has been thought to exploit the untapped and wasted water and make the best use of it. Surface water runoffs (floods) are important water source. The most important areas affected by the floods are Sinai and the Eastern Desert, which have sufficient source of water untapped.

Eastern Desert of Egypt is filled of wadis which are subjected to sudden rains that turn into huge floods that flow to the ground and dry either by leaking through the soil or through evaporation without being exploited and thus a large amount of water is lost. In addition, they pose a threat to villages and cities. Over the years, these floods have caused disasters that have claimed human lives and damaged vegetation, livestock and infrastructure.

Since Egypt needs every drop of water, the storage of flood water may cover part of these needs. It will also reduce the risks to and contribute to the development of villages and cities, as well as the artificial recharge of groundwater reservoirs, and provide water in times of drought.

In this thesis, the floods in four Wadis of Eastern Desert of Egypt were examined. The four Wadis are: Wadi Abu Ghusun, Wadi Al-Nakheil, Wadi Al-Assuity, and Wadi Qena. The examinations of the four Wadis study how to take advantage of water storage, and the methods of protection and mitigation of the risks and disasters that can cause them by proposing solutions and models for water conservation and its uses in development sustainable environments. This thesis also examined the environmental impact assessment of these solutions in water storage areas in the basins under study.

Through this thesis the following studies were conducted:

- 1. Climatologic Analysis to determine the amounts of rainfalls and run-off.
- Quantitative geomorphology to determine characteristics of each of the four wadis in the study area and its risks of flooding through defining the hydrological parameters with respect to the order bifurcation ratio, frequency of drainage density for major basins using topographic maps, remote sensing maps, geographic and hydro-geologic maps, and mining locations.
- 3. Means of runoff mitigation means to protect the villages and cities from its risks.
- 4. Optimum use of runoff water through construction of water harvesting means such as check dams, flood spreading bunds, collection ponds, cisterns, and dams.
- 5. Environmental impact assessment to define the impacts of water harvesting means on the surrounding environment.

TABLE OF CONTENTS

Cont	ent	Page Number
DED	ICATION	iv
ACK	NOWLEDGEMENT	V
ABS'	TRACT	vi
CON	TENTS	viii
LIST	LIST OF TABLES	
LIST OF FIGURES		xvii
СНА	PTER 1: INTRODUCTION	1
1-1	Background	1
1-2	Thesis Problem	4
1-3	Research Objectives	6
1-4	Research Plan	6
1-5	Research Methodologies	7
	1-5-1 Desk Research	7
	1-5-2 Interviewing and Data Collection	8
	1-5-3 Experimental Works	8
1-6	Thesis Layout	9
СНА	PTER 2: PRESENT SITUATION OF WATER	12
RES	OURCES OF EGYPT; PROBLEMS,	
СНА	LLENGAES, AND WATER VISION FOR	
DEV	ELOPMENT	
2-1	Egypt Location	11
2-2	Present Situation of Water Resources of Egypt	13
	2-2-1 Nile River Water Resource	14

	2-2-2 Other Natural Water Resources in Egypt	19
	2-2-3 Non-Conventional Water Resources	22
2-3	Problems, Challenges, and Obstacles Facing Water	24
	Improvement	
2-4	Water Supply and Demand	25
2-5	Water Vision for Development	28
	2-5-1 Suggested General Strategic Basis for Water	29
	Development in Egypt	
	2-5-2 Main Directions and Rectifiers for Sustainable	30
	Water Development	
CHA	PTER 3: CLIMATOLOGIC ANALYSIS	34
3-1 L	iterature Review	34
	3-1-1 Rainfall	34
	3-1-1-1 Rainfall Process	36
	3-1-1-2 Environmental Impacts Due to Changes	37
	of Rainfall Intensities	
	3-1-1-3 Presentation of Rainfall Records	38
	3-1-1-4 Average Rain Calculation	42
	3-1-1-5 Corrections of Rainfall Records "Double	49
	Mass Curve"	
	3-1-2 Precipitation	50
	3-1-2-1 Effective Average Rate of Precipitation	51
	3-1-3 Evaporation and Evapotranspiration	52
	3-1-4 Runoff	56
	3-1-4-1 Types of Runoff (Flow)	56
	3-1-4-2 Factors Affecting Runoff	59
	3-1-4-3 Runoff Coefficients	61

3-1-4-4 Runoff Plots	63
3-1-5 Flash Floods	65
3-2 Practical Part	68
3-2-1 Climatology in Eastern Desert of Egypt	68
3-2-2 Climate Conditions in the Study Area	72
3-2-2-1 Wadi Abu Ghusun	72
3-2-2-2 Wadi Al-Nakheil	77
3-2-2-3 Wadi Al- Assuity	81
3-2-2-4 Wadi Qena	85
CHAPTER 4: GEOMOPHOLGIC ANALYSES OF THE	89
INVISTIGATED WADIS AND DETERMINATION OF	
THEIR HYDROLOGIC AND GEOMORPHOLOGIC	
CHARACTERISTICS	
4-1 Introduction	89
4-2 Theoretical Part	90
4-2-1 Classifications of Runoff Stream Channels	90
4-2-1-1 Classification Based On Stream Pattern	90
4-2-1-2 Classification Based On Stream Flow	92
Conditions	
4-2-1-3 Classification Based On Stream Order	94
4-2-1-4 Morphometric Analysis	98
4-3 Practical Part	112
4-3-1 Eastern Desert of Egypt	112
4-3-2 Wadi Abu Ghusun	123
4-3-2-1 General Geology & Geomorphology of	123
Wadi Abu Ghusun	
4-3-2-2 Morphometric Analysis of Wadi	127

Abu Ghusun 4-3-3 Wadi Al- Nakheil 140 4-3-3-1 General Geology & Geomorphology of 140 Wadi Al- Nakheil 4-3-3-2 Morphometric Analysis of Wadi 145 Al- Nakheil 4-3-4 Wadi Al- Assuity 157 4-3-4-1 General Geology & Geomorphology of 157 Wadi Al- Assuity 4-3-4-2 Morphometric Analysis of Wadi 160 Al- Assuity 4-3-5 Wadi Oena 174 4-3-5-1 General Geology & Geomorphology of 174 Wadi Qena 4-3-5-2 Morphometric Analysis of Wadi Qena 181 **CHAPTER 5: APPLICATION OF COMPUTER** 195 PROGRAMS FOR EVALUATION OF GROUNDWATER CHARACTERISTICS 5-1 Computer Software Packages 195 5-1-1 SMADA Computer Software Package Version 6 195 5-1-2 AQTESOLV Computer Software Package 196 Version 4 5-1-3 GWW Computer Software Package Version 3 197 5-2 Results and Calculations 197 5-2-1 Wadi Abu Ghusun 197 5-2-1-1 Hydraulic Parameters of the Quaternary 199

Aquifer of Wadi Abu Ghusun	
5-2-2 Wadi Al-Nakheil	200
5-2-2-1 Hydraulic Parameters of the Quaternary	202
Aquifer of Wadi Al- Nakheil	
5-2-2-2 Well Efficiency and Productivity of the	204
Productive Wells	
5-2-3 Wadi Al- Assuity	206
5-2-3-1Well Efficiency and Productivity of the	208
Productive Wells	
5-2-4 Wadi Qena	210
5-2-4-1 Well Efficiency and Productivity of the	211
Productive Wells	
CHAPTER 6: STUDY OF VARIOUS WATER	217
HARVESTING MEANS AND ARTIFICIAL	
RECHARGE OF GROUNDWATER	
6-1 Background	217
6-2 Rainwater Harvesting	218
6-3 Underground Recharge	220
6-3-1 Natural Recharge	223
6-3-2 Artificial Recharge	223
6-3-2 Artificial Recharge 6-4 Methods of Harvesting Rainwater	223226
C .	
6-4 Methods of Harvesting Rainwater	226
6-4 Methods of Harvesting Rainwater 6-4-1 House Rooftops Collection System	226 226

6-4-5 Cisterns	233
6-4-6 Storage Dams	235
6-4-7 Suggested Rain Harvesting Methods in Study	243
Area	
6-4-7-1 Probability and Return Period Analysis	244
6-4-7-2 Wadi Abu Ghusun	245
6-4-7-3 Wadi Al- Nakheil	250
6-4-7-4 Wadi Al- Assuity	255
6-4-7-5 Wadi Qena	260
CHAPTER 7: MODEL DESIGNS OF THE SUGGESTED	267
WATER HARVESTING MEANS	
7-1 Check Dams	267
7-1-1 Purposes	267
7-1-2 Suggested Design	268
7-1-3 Maintenance	269
7-2 Flood Spreading Bunds	
7-2-1 Purposes	272
7-2-2 Suggested Design	272
7-2-3 Maintenance	274
7-2-4 Suggested Model Designs	274
7-3 Cisterns	286
7-3-1 Purposes	286
7-3-2 Suggested Design	287
7-3-3 Maintenance	287
7-3-4 Suggested Model Designs	288
7-4 Collection Ponds	295
7-4-1 Purpose	296

7-4-2 Suggested Design	296
7-4-3 Maintenance	296
7-4-4 Suggested Model Designs	296
7-5 Dams	303
7-5-1 Purposes	304
7-5-2 Suggested Design	304
7-5-3 Maintenance	305
7-5-4 Suggested Model Designs	305
CHAPTER 8: ENVIRONMENTAL IMPACT	310
ASSESSMENT OF THE SUGGESTED SOLUTIONS	
8-1 Introduction	310
8-2 EEAA Report Elements	312
8-2-1 Brief Explanation of Elements	313
8-3 Suggested Projects	316
8-3-1 Check Dams	317
8-3-2 Flood Spreading Bunds	321
8-3-3 Cisterns	326
8-3-4 Collection Ponds	331
8-3-5 Dams	335
8-3-6 Cost Estimation of Several Means of Water Harvesting	340
CHAPTER 9: CONCLUSION & RECOMMENDATIONS	344
SUMMARY	351
REFERENCES	356