

# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

**Electronics and Communications Engineering Department** 

# **Fully Integrated Sensor Interface Circuits**

### A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

### Submitted by

## **Mohamed Hamed Mohamed El-Arabawy**

B.Sc. of Electrical Engineering
(Electronics and Communications Engineering)
Ain Shams University, 2005

Supervised By

Prof. Dr. Hisham Sayed Ramadan Haddara Dr. Ayman Mohamed Abdelmoneim El-Sayed

Cairo, 2013

# Examiners Committee English

# **Curriculum Vitae**

Name of Researcher: Mohamed Hamed Mohamed El-Arabawy

**Date of Birth:** 11/08/1982 **Place of Birth:** Tripoli, Libya

First University Degree: B.Sc. in Electrical Engineering

Name of University: Ain Shams University

**Date of Degree:** June 2005

# **STATEMENT**

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Mohamed Hamed Mohamed El-Arabawy

**Signature**:

Date:

# **Acknowledgments**

All praise is due to Allah, Most Merciful, the Lord of the Worlds, Who taught man what he knew not. I would like to thank God Almighty for bestowing upon me the chance, strength and ability to complete this work.

I wish to express my gratitude to my supervisors, Professor Hisham Haddara and Dr. Ayman Elsayed for their exceptional guidance, encouragement, flexibility, insightful thoughts and useful discussions.

I am deeply indebted to Dr. Ayman Elsayed, design manager at Si-Ware systems, whose help, stimulating suggestions and encouragement helped me in all the time of research for and writing of this thesis. I have learned a lot from him, on both the technical and personal levels. I am in no way capable of appropriately thanking him for his great help to me.

I would like also to express my thanks to my colleague at Si-Ware Systems: Ahmed El-Shennawy for continuous guidance, fruitful discussions and useful thoughts. Thanks also go to my colleagues at Si-Ware Systems: Ahmed Othman, Ahmed Safwat and Botros George for the many fruitful discussions.

Many thanks are also due to my Professors and colleagues at IC Lab, Ain Shams University for their knowledge, help and support.

Finally, I would like to express my love and gratitude to my family for their unconditional love and unlimited support.

Mohamed Hamed El-Arabawy Electrical and Communications Department Faculty of Engineering Ain Shams University Cairo, Egypt 2013

# **Abstract**

MEMS inertial sensors are considered one of the most appealing types of sensors that have been adopted recently in many applications. Extensive research efforts have been invested either to enhance the specifications of the MEMS device or the interface circuitry to allow the competency of these sensors to wide applications requirements. These applications vary from high-end applications requiring very aggressive noise specification with relaxed power and area specifications to consumer applications where power and area specifications are highly appreciated

This thesis aims to introduce the usage of continuous-time sigma delta modulators in MEMS force feedback sensing through a design procedure based totally on continuous-time domain analysis.

It starts with introduction about MEMS inertial sensors and the motivation to use these types of sensors. Next, it presents an overview on MEMS inertial sensor concepts, structures and types. Also an introduction about the basics of sensor interface systems is demonstrated with focusing on the differences between open loop and closed loop systems.

Afterwards, a more elaborate view is highlighted on the sensor interface systems based on closed loop (Force feed-back) identifying system main blocks. Also an overview on sigma delta modulator concepts, types and their employment in force feedback sensing systems is presented. A design procedure is proposed to design electro-mechanical continuous-time sigma delta modulators.

Different implementation topologies for continuous-time sigma delta were shown. The proposed design was implemented using  $0.18\mu m$  HVCMOS technology.

Keywords: MEMS sensors, MEMS, Inertial Sensor, Accelerometer, Gyroscope, Electromechanical modulator, Continuous-time Sigma Delta modulator, Force-Feedback

# **Summary**

MEMS inertial sensors are considered one of the most appealing types of sensors that have been adopted recently in many different applications: consumer, industrial and military. With its wide field of applications, the interface circuitry for these sensors became more challenging to design to achieve the required specifications.

This thesis aims to introduce the usage of continuous-time sigma delta modulators in MEMS force feedback sensing. A work flow for continuous-time electro-mechanical sigma delta design that is based totally on continuous-time domain analysis is introduced. Finally, an ASIC implementation based on  $0.18\mu m$  HVCMOS technology is implemented to verify the proposed architecture.

The thesis is divided into five chapters including lists of contents, tables and figures as well as list of references.

### Chapter 1

It includes thesis introduction and motivation for MEMS inertial sensors and their interface circuitry. This chapter ends with the thesis outline.

### Chapter 2

This chapter presents an introduction about MEMS inertial sensors and their interface circuits. First, we will give a quick overview on MEMS technology. Then we will follow it by introducing the concepts of inertial sensors operation, their types and their different applications. Finally, the sensor interface system is presented while highlighting the differences between open loop and closed loop sensing.

### Chapter 3

In this chapter, a more elaborate view will be introduced on the force feedback sensing system with insight for its main building blocks. Then, an introduction will be presented for sigma delta modulators explaining its concepts, architectures, types and their employment in force feedback inertial sensor sensing forming what is known as the electro-mechanical sigma delta modulators. Finally, we will present a summary for existing research and industrial sensors.

### <u>Chapter 4</u>

In the start of this chapter, we will present the linear model of the electro-mechanical sigma delta modulator. Following that, we will introduce the proposed work flow used to design the continuous-time electro-mechanical modulator comparing it with previously used flows. Then we will apply the proposed flow in designing an electro-mechanical sigma delta modulator for gyroscope interface.

### Chapter 5

This chapter starts by a survey on the different implementation techniques for continuous-time sigma delta modulators. Then, it presents the implementation of the proposed architecture based on 0.18µm HVCMOS technology accompanied with achieved results.

# **Contents**

| Lis | t of | Tables                                                           | 1        |
|-----|------|------------------------------------------------------------------|----------|
| Lis | t of | Figures                                                          | 3        |
| Lis | t of | Abbreviations                                                    | 7        |
| 1.  | Intr | oduction                                                         | 9        |
|     | 1.1. | Overview                                                         | 9        |
|     |      | J                                                                | 11       |
|     | 1.3. | Thesis Outline                                                   | 12       |
| 2.  | ME   | MS Inertial Sensors and Interface Circuitry                      | 13       |
|     | 2.1. | Overview                                                         | 13       |
|     | 2.2. | MEMS Technology                                                  | 13       |
|     | 2.3. | Inertial Sensors                                                 | 15       |
|     |      | 2.3.1. Accelerometers                                            | 15       |
|     |      | 2.3.2. Gyroscopes                                                | 23       |
|     | 2.4. | Sensor Interface System                                          | 30       |
|     |      | 2.4.1. Drive sub-system                                          | 31       |
|     |      | 2.4.2. Sense sub-system                                          | 31       |
|     | 2.5. | Summary                                                          | 32       |
| 3.  | Ford | ce Feedback Inertial Sensors Sensing                             | 33       |
|     | 3.1. | Introduction                                                     | 33       |
|     | 3.2. | 8 - 9 - 9                                                        | 33       |
|     |      | 3.2.1. Sensor (Accelerometer / Gyroscope)                        | 33       |
|     |      | 3.2.2. Capacitance-to-Voltage Converter (C/V)                    | 35       |
|     |      | 3.2.3. Controller                                                | 37       |
|     |      | 3.2.4. Voltage-to-Force Converter (V/F)                          | 37       |
|     | 3.3. | 8                                                                | 39       |
|     |      | 3.3.1. Sigma-Delta Modulators Concepts                           | 41       |
|     | 2 4  | O .                                                              | 46       |
|     | 3.4. | Continuous-time Sigma-Delta Modulator As Inertial Sensor Sensing | 40       |
|     | 2.5  | Interface                                                        | 49<br>50 |

| 4.  | Con   | tinuous-Time Electromechanical Modulator System Design         | <b>53</b> |
|-----|-------|----------------------------------------------------------------|-----------|
|     | 4.1.  |                                                                | 53        |
|     | 4.2.  | Electromechanical Sigma-Delta Modulator Continuous-time Quasi- |           |
|     |       | linear Model                                                   | 53        |
|     | 4.3.  | Modulator System Design Procedure                              | 55        |
|     |       | 4.3.1. OSR & Order Selection                                   | 55        |
|     |       | 4.3.2. NTF & Loop filter Design                                | 56        |
|     |       | 4.3.3. Modulator Stability and Achieved SQNR                   | 58        |
|     |       | 4.3.4. Loop Filter Architecture Implementation                 | 62        |
|     | 4.4.  | Continuous-time Electromechanical Sigma-Delta Modulator Design |           |
|     |       | Procedure Summary                                              | 66        |
|     | 4.5.  | Summary                                                        | 68        |
| 5.  | Circ  | uit Implementation and Results                                 | 69        |
|     |       | Introduction                                                   | 69        |
|     | 5.2.  | Continuous-time Sigma-Delta Integrator Topologies              | 69        |
|     |       | 5.2.1. GmC Integrator                                          | 69        |
|     |       | 5.2.2. LC Resonator                                            | 70        |
|     |       | 5.2.3. Active GmC Integrator                                   | 71        |
|     |       | 5.2.4. Active RC Integrator                                    | 71        |
|     |       | 5.2.5. Active MOSFET-C Integrator                              | 72        |
|     |       | 5.2.6. Summary                                                 | 73        |
|     | 5.3.  | Comparator Topologies                                          | 75        |
|     |       | 5.3.1. Open-loop Comparators                                   | 75        |
|     |       | 5.3.2. Pre-amplifier Based Latched Comparators                 | 76        |
|     |       | 5.3.3. Fully Dynamic Latched Comparator                        | 76        |
|     | 5.4.  | Modulator Circuit Implementation                               | 78        |
|     |       | 5.4.1. Modulator Top-level                                     | 78        |
|     |       | 5.4.2. Integrator Stages                                       | 78        |
|     |       | 5.4.3. Comparator                                              | 80        |
|     | 5.5.  | System Results                                                 | 82        |
|     | 5.6.  | Summary                                                        | 83        |
| Co  | nclus | sions                                                          | 85        |
| Fu  | ture  | Work                                                           | 86        |
|     |       |                                                                |           |
| A.  |       | lab Script for Modulator design                                | 89        |
|     |       | Overview                                                       | 89<br>89  |
| Г.  |       |                                                                |           |
| Bil | bliog | raphy                                                          | 91        |

# **List of Tables**

|      | Commercially available gyroscopes                                           |    |
|------|-----------------------------------------------------------------------------|----|
| 3.1. | Comparison between discrete-time and continuous-time sigma-delta modulators | 50 |
| 4.2. | Gyroscope sense mode parameters                                             | 56 |
| 5.2. | Modulator resistor and capacitor values                                     | 79 |

# **List of Figures**

| 1.1.  | Sensor block diagram                                                                 | 9        |
|-------|--------------------------------------------------------------------------------------|----------|
| 1.2.  | MEMS inertial sensors consumer applications [YoleDeveloppement 11]                   | 10       |
| 1.3.  | Penetration of inertial sensors in mobile phones [YoleDeveloppement 11]              | 11       |
| 2.1.  | Example for bulk micro-machining [Senturia 00]                                       | 14       |
| 2.2.  | Example for surface micro-machining [Senturia 00]                                    | 14       |
| 2.3.  | Lumped parameter model of an accelerometer consisting of a proof                     |          |
|       | mass, a spring, and a damping element [White 04]                                     | 15       |
| 2.4.  | Piezoresistive accelerometer[hsi Lo 01]                                              | 18       |
| 2.5.  | Capacitive accelerometer with vertical capacitor structure [White 04].               | 19       |
| 2.6.  | Capacitive accelerometer with lateral capacitor structure [Goodenough 9              | 1]. 19   |
| 2.7.  | (a) Piezoelectric accelerometer (b) SEM of the sensing element [White 04             | 20       |
| 2.8.  | Tunneling current accelerometer [Rockstad 96]                                        | 20       |
| 2.9.  | Resonant accelerometer [Roessig 97]                                                  | 21       |
| 2.10. | Accelerometer Model                                                                  | 23       |
| 2.11. | Spinning wheels gyroscope                                                            | 26       |
| 2.12. | Fiber optic gyroscope (FOG)                                                          | 27       |
| 2.13. | Ring laser gyroscope [Encyclopaedia Britannica 04]                                   | 27       |
| 2.14. | Capacitive MEMS Gyroscope [W. A. Clark 96]                                           | 27       |
| 2.15. | Gyroscope model                                                                      | 28       |
|       | Accelerometer sensor system                                                          | 30       |
| 2.17. | Gyroscope sensor system                                                              | 30       |
| 2.18. | Closed loop sensing (force feedback)                                                 | 32       |
| 3.1.  | Force Feedback Sensing System                                                        | 33       |
| 3.2.  | MEMS Capacitive Inertial Sensor Structure                                            | 34       |
| 3.3.  | MEMS Capacitive Inertial Sensor Model                                                | 34       |
| 3.4.  | Sampled-time switched capacitor (SC) C/V                                             | 35       |
| 3.5.  | Sampled-time switched capacitor (SC) C/V with correlated double sampling [Lemkin 97] | 36       |
| 3.6.  | Continuous-time voltage sensing with open loop fully differential topol-             |          |
|       | ogy [Wu 02b]                                                                         | 36       |
| 3.7.  | Continuous-time voltage sensing with capacitive feedback [Chau 95] .                 | 36       |
| 3.8.  | Continuous-time current sensing with transimpedance amplifier [Fedder 9              | 94]      |
| 3 9   | Vertical and lateral capacitors structures                                           | 37<br>38 |

| 3.10. | Analog Force Feedback Loop[White 04]                                     | 39 |
|-------|--------------------------------------------------------------------------|----|
|       | Digital Force Feedback Loop[White 04]                                    | 39 |
| 3.12. | (a) Delta Modulator (b) Delta Demodulator                                | 40 |
|       | Delta Modulation Simulation                                              | 40 |
| 3.14. | Derivation of sigma-delta modulators                                     | 41 |
| 3.15. | Sampling process using impulse train                                     | 42 |
| 3.16. | Quantization noise probability distribution function and power spec-     |    |
|       | tral density in case of Nyquist sampling                                 | 43 |
| 3.17. | Quantization noise power spectral density in case of oversampling        | 43 |
| 3.18. | 1st Order Sigma-Delta Modulator linear model                             | 44 |
| 3.19. | 1st Order sigma-delta Modulator STF and NTF                              | 45 |
| 3.20. | Quantization noise power spectral density in case of oversampling and    |    |
|       | noise shaping                                                            | 45 |
| 3.21. | CIFB modulator topology                                                  | 47 |
| 3.22. | CIFF modulator topology                                                  | 47 |
|       | CRFB modulator topology                                                  | 47 |
| 3.24. | CRFF modulator topology                                                  | 48 |
| 3.25. | 3rd Order Cascade modulator                                              | 48 |
| 3.26. | Block diagram and transfer characteristics for (a) single bit quantizers |    |
|       | (b) multi-bit quantizers                                                 | 49 |
| 3.27. | (a) Discrete-time sigma-delta modulator (b) Continuous-time sigma-       |    |
|       | delta modulator                                                          | 49 |
| 4.1.  | Electromechanical sigma-delta modulator block diagram                    | 53 |
| 4.2.  | Electromechanical sigma-delta modulator linear model                     | 54 |
| 4.3.  | Gyroscope sense mode bode diagram                                        | 55 |
| 4.4.  | SQNR versus oversampling ratio (OSR) for various modulator order         | 00 |
| 1. 1. | (N)                                                                      | 56 |
| 4.5.  | Electrical sigma-delta modulator                                         | 57 |
| 4.6.  | electromechanical sigma-delta modulator                                  | 58 |
| 4.7.  | NTF(s) frequency response                                                | 59 |
|       | $H_{LF}(s)$ frequency response                                           | 59 |
|       | Root locus for loop filter while varying quantizer gain $(k_q)$          | 60 |
|       | Quantizer effective gain $k_{q_{eff}}$ versus input amplitude            | 61 |
|       | Modulator power spectral density for -6 dBFS input                       | 61 |
| 4.12. | SQNR versus input amplitude                                              | 62 |
| 4.13. | Power spectral density for input at 2.9 kHz                              | 62 |
|       | Power spectral density for input at 3.1 kHz                              | 63 |
| 4.15. | Conventional 2nd order sigma-delta loop                                  | 63 |
| 4.16. | Mechanical filter in sigma-delta loop                                    | 64 |
| 4.17. | Fourth order electromechanical sigma-delta modulator based on a          |    |
|       | feedback architecture with a feedforward branch (FB with FF branch)      | 64 |
| 4.18. | Fourth order electromechanical sigma-delta modulator based on a          |    |
|       | feedforward architecture with a feedback branch (FF with FB branch)      | 64 |

| 4.19. | Fourth order electromechanical sigma-delta modulator based on a        |    |
|-------|------------------------------------------------------------------------|----|
|       | feedback architecture with a feedforward branch (FB with FF branch)    | 65 |
| 4.20. | The complete model for electromechanical sigma-delta modulator         | 66 |
| 4.21. | Power spectral density for modulator complete model with input am-     |    |
|       | plitude $400^{\circ}/s$ (-12 dBFS)                                     | 66 |
| 4.22. | Proposed design procedure for continuous-time electromechanical sigma- |    |
|       | delta modulator                                                        | 67 |
| 4.23. | Current design procedure for continuous-time electromechanical sigma-  |    |
|       | delta modulator                                                        | 68 |
| 5.1.  | Differential gmC integrator                                            | 70 |
| 5.2.  | Differential LC resonator                                              | 70 |
| 5.3.  | Differential active gmC integrator                                     | 71 |
| 5.4.  | Differential active RC integrator                                      | 72 |
| 5.5.  | Differential active MOSFET-C integrator                                | 73 |
| 5.6.  | PSD for modulator output with -12 dBFS input with coefficient vari-    |    |
|       | ation $(+5\%)$                                                         | 74 |
| 5.7.  | PSD for modulator output with -12 dBFS input with coefficient vari-    |    |
|       | ation $(-5\%)$                                                         | 74 |
| 5.8.  | (a) Comparator Model (b) Comparator ideal transfer characteristics .   | 75 |
| 5.9.  | open-loop comparator [Phillip E. Allen 11]                             | 75 |
| 5.10. | Pre-amplifier Based Latched Comparators [Figueiredo 06]                | 76 |
| 5.11. | Resistor divider comparator [Cho 95]                                   | 77 |
|       | Latch-type voltage sense amplifier comparator [Kobayashi 93]           | 77 |
| 5.13. | Double tail latched comparator[van Elzakker 08]                        | 78 |
|       | Modulator top level schematic                                          | 79 |
|       | Op-amp schematic                                                       | 80 |
|       | Op-amp AC response                                                     | 80 |
|       | Op-amp transient response                                              | 81 |
|       | Comparator schematic                                                   | 81 |
|       | 1                                                                      | 82 |
|       | 1                                                                      | 82 |
| 5.21. | PSD for modulator output circuit level                                 | 83 |