

Implementation of Building Information Modeling Technology in the Design Process

A Thesis Submitted to the Faculty of Engineering in Partial Fulfillment for the Requirements of the Degree of Master of Science in Architecture

Prepared By

Mohammed Refaat Mekawy Mohammed

B.Sc. Architecture Ain Shams University, 2007

Under Supervision of

Associate Prof. Dr. Ahmed Atef El Desouky

Associate Professor of Architecture Faculty of Engineering – Ain Shams University

Dr. Hazem Talaat El-Daly

Lecturer of Architecture
Faculty of Engineering – Ain Shams University

Cairo, Egypt

2013

Ain Shams univeristy

Faculty of Engineering

Department of Architecture

Name: Mohammed Refaat Mekawy Mohammed

Title: Implementation of Building Information Modeling Technology in

the Design Process

Degree: Master of Science in Architecture.

Examining Committee

Prof. Dr. Ahmed Reda Abdeen

Sig:

Professor of Architecture – Faculty of Engineering – Cairo University

Prof. Dr. Sayed Madbouly Ali

Sig:

Professor of Architecture – Faculty of Engineering – Ain Shams University

Associate Prof. Ahmed Atef El Desouky

Sig:

Associate Professor of Architecture – Faculty of Engineering – Ain Shams University

Post Graduate studies

Approval Approval stamp

/ / 2013

Faculty Council Approval

University Council Approval

/ / 2013

/ / 2013

Statement

This thesis is submitted to Ain Shams University for the degree of Master in Architecture. The work included in this thesis was accomplished by the author at the Department of Architecture, Faculty of Engineering, Ain shams University from 2010 to 2013.

No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Date: / /

Signature:

Name: Mohammed Refaat Mekawy Mohammed

Faculty: Faculty of Engineering – Ain Shams University

Acknowledgement

All praises due to God, the most gracious. I thank God for all what I have achieved, and for the patience he inspired me to endure the hardships encountered along the way.

I would like to express my deep gratitude to everyone who helped me accomplish this work, starting with **my mother**, **my father** and **my siblings**. I would like to thank them for their unmatched patience and support as well as their love and care throughout the years.

I would like to thank my advisors, who through their knowledge and guidance helped me complete such an honorable degree. I hereby thank Professor **Ahmed Atef** for his guidance, support and confidence in my abilities, Dr. **Hazem El-Daly** for his unmatched dedication and consistent help and guidance.

Special acknowledgement to my M.Sc. committee members; Professor **Sayed Madbouly** and Professor **Ahmed Reda Abdeen**. Their valuable comments and insightful guidance were crucial to improve upon the presented research.

There are many others to sincerely thank, including those who gave of their time for interviews and valuable discussions, and generously shared their valuable academic and professional knowledge with me; Professor Hanan Sabry, Dr. Sherif Morad, Dr. Magdy Ibrahim, Eng. Mohammed Hussein, Eng. Adel Saleh, Eng. Hamoda Youssef.

Lastly, while I can't count or mention all of them, my thanks will extend to my fellow graduate students for their help, enthusiasm and encouragement; Ayman Farid, Ayman Raees, Dawlat El-Mossalamy, Mahmoud El-Nably, Manar Mohammed, Mohammed Eid, Mostafa Mahdy, Walid El Shamy. I am truly honored and blessed to have you by my side as friends and companions.

Abstract

<u>Title:</u> Implementation of Building Information Modeling technology in the design process

Description: Building design process involves dealing with a lot of information. With the advent of computers, many improvements were made to this process and many of the manual processes associated with it were automated. But this progress has been constrained by the limited intelligence of computer applications in representing buildings and the capability to extract the relevant information needed for design, causing problems with conveying design intent, speed and accuracy. That led to the development of Building Information Modeling (BIM) technology. BIM involves the use of information rich models to simulate the design, construction and operation of a facility in a more convenient way.

This research aims to explore the new and changed methods and activities of design as affected by BIM. It presents a new theoretical framework of dealing with design activities in the new BIM-enabled environment. This was done through discussing traditional computer aids for design, highlighting the limitations and inefficiencies in the design process under a pre-BIM design environment. Next the main principles of BIM were discussed highlighting the problems it addresses and what changes it may cause in traditional projects' duration and staff configuration. Then the research deduced eleven BIM applications in architectural practice, varying from academic experimentation phases to established professional practice. Next the nature of the design process, the activities it involves and the stages it goes through were investigated to produce a map of design activities. Then the eleven BIM applications were superimposed on the map of identified design activities, highlighting the areas of change and improvement, producing a theoretical framework of dealing with design activities in the a BIM-enabled design environment. Finally three case studies were presented to illustrate the practical implementation of the technology in the design process.

<u>Keywords:</u> Computer aided design (CAD), Parametric Design, Building Information Modeling (BIM), Architectural Technology.

List of contents

Abstract1
List of contentsiii
List of figuresix
List of tablesxiii
List of Acronymsxv
Introductionxix
1. Chapter 1: Introduction to Computer Aided Architectural
Design 3
1.1. Conventional CAD usage in architecture 3 1.1.1. History of CAD
1.1.2. Methods of conventional CAD usage in architecture
1.2. Problems with conventional CAD tools
1.3. Parametric modeling
1.4. Building Information Modeling (BIM)20 1.4.1. BIM as an extension of parametric modeling
1.5. Conclusion23
2. Chapter 2: Building Information Modeling concepts 27
2.1. History of BIM27
2.2. Definition and meaning of BIM28

2.3.	Characteristics of Building Information Models	30
	2.3.1. BIM operates on digital databases	30
	2.3.2. BIM is object based	33
	2.3.3. BIM provides more enhanced parametric modeling	35
2.4.	Data exchange in a BIM environment	38
	2.4.1. Roots of interoperability	
	2.4.2. Interoperability in a BIM environment	
	2.4.3. Public data exchange formats	
	2.4.4. Modeling standards and data exchange protocols	
2.5	BIM in Integrated project delivery	52
2.5.	2.5.1. Impact of BIM and IPD on AEC projects	
	2.5.2. Example	
2.6	Change in process	
2.0.	2.6.1. Change of staffing within design firms	
	2.6.2. Change of project phases' duration	
2.7		
2.7.	Current status of BIM	
	2.7.1. BIM adoption percentage	
	2.7.2. BIM software adoption	60
2.8.	Conclusion	63
2		
	Chapter 3: Building information modeling applications in	
arch	itecture	67
3.1.	Programming and space planning	67
	3.1.1. Definition and meaning	67
	3.1.2. Traditional practice	68
	3.1.3. BIM implementation	69
3.2.	Form exploration	72
	3.2.1. Definition and meaning	72
	3.2.2. Traditional practice	
	3.2.3. BIM implementation	75
3.3.	Documents production	82
	3.3.1. Definition and meaning	
	3.3.2. Traditional practice	83

3.4.	Design Coordination	86
	3.4.1. Definition and meaning	86
	3.4.2. Traditional practice	86
	3.4.3. BIM implementation	88
3.5.	Design review and visualization	92
	3.5.1. Definition and meaning	
	3.5.2. Traditional practice	92
	3.5.3. BIM implementation	93
3.6.	Sustainable design	97
	3.6.1. Definition and meaning	
	3.6.2. Traditional practice	102
	3.6.3. BIM implementation	104
3.7.	Scheduling (4D Modeling)	115
	3.7.1. Definition and meaning	
	3.7.2. Traditional practice	115
	3.7.3. BIM implementation	117
3.8.	Cost estimation	121
	3.8.1. Definition and meaning	121
	3.8.2. Traditional practice	122
	3.8.3. BIM implementation	123
3.9.	Design and code checking	128
	3.9.1. Definition and meaning	128
	3.9.2. Traditional practice	128
	3.9.3. BIM implementation	129
3.10	O. Modeling existing conditions	133
	3.10.1. Definition and meaning	133
	3.10.2. Traditional practice	133
	3.10.3. BIM implementation	135
3.11	1. Prefabrication	139
	3.11.1. Definition and meaning	139
	3.11.2. Traditional practice	140
	3.11.3. BIM implementation	141
3.12	2. Conclusion	146

4. (4. Chapter 4: New methods of design based on Building				
Info	rmation Modeling implementation.	151			
4.1.	Definition and nature of (Design)	- 151			
4.2.	Design maps	- 155			
	4.2.1. RIBA design map				
	4.2.2. Markus/Maver Map	158			
	4.2.3. AIA's design process				
	4.2.4. The unified design process map	168			
4.3.	BIM applications map	- 170			
4.4.	The proposed framework for dealing with design activities in a				
BIM	I-enabled environment	- 172			
4.5	Case studies	- 175			
	4.5.1. Methodology				
	4.5.2. Case 1: Veterans Affairs Medical Center campus				
	4.5.3. Case 2: D.C. Consolidated Forensic Lab				
	4.5.4. Case 3: Barwa New Cairo Town center	187			
	4.5.5. Comparative analysis between the presented case studies	191			
4.6.	Conclusion	- 194			
Conc	clusions and Recommendations	199			
A.	Conclusions	- 199			
B.	Recommendations	- 203			
Refe	rences	209			
A.	Published books	- 209			
B.	Theses and dissertations	- 210			
C.	Journal articles	- 210			
D.	Conference papers	- 211			
E.	Reports and white papers	- 212			
F.	Worldwide Web resources	- 215			

G.	Video recordings	218
H.	Interviews	218