

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of Dry-Stack Interlocking Masonry walls Under Out-of-Plane Loading

A Thesis Submitted in Partial Fulfillment of the Requirements for the degree of

Master of Science in Civil Engineering

(Structural Engineering)

by

Eng. Hesham Ahmed Sokairge

Bachelor of Science in Civil Engineering

(Structural Engineering)

Faculty of Engineering, Ain Shams University, 2010

Supervised By

Dr. Hany Mohamad El-Shafie

Associate Professor of Structural Engineering Faculty of Engineering Ain Shams University

Dr. Ahmed Rashad Mohamed

Assistant Professor of Structural Engineering Faculty of Engineering Ain Shams University

Cairo (2016)

قسعنما قياك - سمش زبيد قعمام

قسم المندسة الإنشائية

سلوك حوائط المبانى من الوحدات المتداخلة بدون مونة تحت تأثيرالأحمال خارج المستوى رسالة مقدمة

للحصول على درجة الماجستير في الهندسة المدنية قسم الهندسة الإنشائية

إعداد

مهندس: هشام أحمد سكيرج محمد بكالوريوس الهندسة المدنية جامعة عين شمس – 2010

تحت إشراف

دكتور/ هاني محمد الشافعي أستاذ مساعد - قسم الهندسة الإنشائية كلية الهندسة - جامعة عين شمس

دكتور/ أحمد رشاد محمد مدرس - قسم الهندسة الإنشائية كلية الهندسة - جامعة عين شمس

القاهرة (2016)

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of Dry-Stack Interlocking Masonry walls Under Out-of-Plane Loading

by

Eng. Hesham Ahmed Sokairge

Bachelor of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2010

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Ahmed A. Hamid	
Professor and Director of the Masonry	
Research Laboratory,	
Drexel University, Philadelphia, USA.	
Prof. Dr. Ahmed Sherif Essawy	
Professor of Reinforced Concrete Structures,	
Structural Engineering Department,	
Faculty of Engineering, Ain Shams University.	
Prof. Dr. Hany M. Elshafie	
Associate Professor of Properties and Testing of Materials,	
Structural Engineering Department,	
Faculty of engineering Ain Shams University	

Date: 06 March 2016

Statement

Disclaimer

This thesis is submitted as partial fulfillment of the Requirements for the

degree of Master of Science in Civil Engineering, Faculty of

Engineering, Ain Shams University.

The work included in this thesis was carried out by the author during the

Period from 2011 to 2016, and no part of it has been submitted for a

degree or qualification at any other scientific entity.

The candidate confirms that the work submitted is his own and that

appropriate credit has been given where reference has been made to the

work of others.

Student Name

Hesham Ahmed Sokairge

Signature

Date: 06 March 2016

iii

إقرار

هذة الرسالة مقدمة في جامعة عين شمس – كلية الهندسة ، قسم الهندسة الإنشائية للحصول على درجة الماجستير في الهندسة المدنية. إن العمل الذي تحتويه هذة الرسالة قد تم إنجازه بمعرفة الباحث سنة 2016.

هذا و يقر الباحث أن العمل المقدم هو خلاصة بحثه الشخصى – و أنه قد اتبع الإسلوب العلمي السليم في الإشارة إلى المواد المؤخوذة من المراجع العلمية كل في مكانه في مختلف أجزاء الرسالة.

وهذا إقرار منى بذلك،،،،

التوقيع:

الباحث: هشام أحمد سكيرج

التاريخ: 2016/04/10

ABSTRACT

The search for appropriate, easy, fast and cost effective ways for wall construction has lead to a promise technique known as "Dry-stack interlocking masonry system". Nevertheless, there are several disadvantages with this system. One of the major drawbacks of this system is the low bending capacity that can be resisted with the interlocking keys alone. To overcome this problem, grouting and reinforcing of the hollow block cells is required which makes the system a bit expensive. Additionally, the dry-stacked units had to settle down to balance uneven surfaces and notches. One method that has been suggested to minimize these drawbacks is post-tensioning of dry-stacked units which lead to elimination of grout and reinforcement without affecting the bending capacity. Thus, construction can be faster and with minimum cost.

The objective of the current research is to investigate the behavior of post-tensioned dry-stacked interlocking masonry walls constructed using locally produced masonry units and prestressing bars under out-of-plane loading. Some of the factors expected to affect the performance of these systems are addressed, namely: construction system, grouting effect, post-tensioning technique and restraining effect of post-tensioning bars.

In order to design the test program, properties of all used materials were investigated then a pre-test analysis was carried out to determine the initial post-tensioning level and predict the lateral load capacity, internal forces at ultimate stage, and failure mechanism.

To assess the out-of-plane behavior of dry-stack interlocking masonry walls, twelve vertically spanning walls (loading span perpendicular to the bed joint) and six horizontally spanning walls (loading span parallel to the bed joint) were constructed and tested under monotonic out-of-plane loading. The test results of each wall were presented in the form of Failure Modes, load – deflection curve, and load – post-tensioning force curve.

Key experimental results showed the similarity in the out-of-plane behavior of locally produced dry-stack interlocking masonry system compared to the conventional masonry system. Ungrouted PT walls had proved to be the most effective construction detail such that; it's load/weight ratio ranges between 1.3 to 1.6 times that of grouted PT walls, in addition to taking the advantage of minimizing construction cost, time, and weight of the structure. Additionally, load can be applied immediately after construction. Post-tensioned grouted walls showed a great enhancement in the cracking load nearly 3 times that of ordinary reinforced walls with a slight degradation in the ultimate load, thus, improving durability, preventing shrinkage cracking, and enhancing appearance under service loads. Unrestrained post-tensioning bars had a negative effect of about 45% reduction of the ultimate strength of ungrouted walls. Horizontal Post-tensioning technique greatly improves the out-of-plane behavior parallel to bed joint where it can achieve a cracking load 5 times that of traditionally joint reinforced wall and an ultimate load 4 times that of traditionally joint reinforced walls with taking the advantages of eliminating grout and its consequent advantages (time, cost, and weight).

Keywords: Dry-stack Masonry; Out-of-plane Behavior; Post-tensioned Masonry; Interlocking Masonry; Mortarless Systems.

ACKNOWLEDGEMENT

I would like to express my deepest thanks and appreciation to my supervisor, Dr. Hany El-Shafie for his guidance and advice throughout this work. I am grateful to him all for having the opportunity to work under his supervision.

Special thanks for my supervisor; Dr. Ahmed Rashad for his valuable assistance, guidance, patience and endless support throughout this research, and reviewing of the manuscript are greatly acknowledged.

Profound gratitude is also forwarded to Dr. Mohamed Kohail M. Fayez for his help and kind cooperation during the experimental phase of this study and his valuable advice during my research.

The experimental work was carried out at the Properties and Testing of Materials Laboratory of the Structural Engineering Department of Ain- Shams University. The help of the laboratory staff in developing work is greatly appreciated. For his distinguished assistance during the experimental work, I would like to express my deepest gratitude to Mr. Nabil Mostaf.

I will always be indebted to my parents for their loving support and encouragement and for making me believe in my dreams and for supporting me to achieve them.

My gratitude to my wife cannot be expressed in words. I would like to thank her for her continuous encouragement, overwhelming support, fruitful care and patience, especially during the hard times.

Researcher Data

Name : Hesham Ahmed Sokairge

Date of birth : 06 March 1987

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Structural Engineering

University issued the degree : Ain Shams

Date of issued degree : August 2010

Current job : Demonstrator

TABLE OF CONTENTS

Abstractiv
Acknowledgement v
Table of Contentsvii
List of Tablesiii
List of Figuresiii
CHAPTER (1): INTRODUCTION
1.1 Overview
1.2 Problem Statement
1.3 Research Objectives
1.4 Structure of the Thesis
CHAPTER (2): LITERATURE REVIEW6
2.1 General6
2.2 Historical Development of Mortarless Systems 6
2.3 Dry-Stacked Masonry Systems
2.3.1 Concrete Dry-stack Masonry systems
2.3.1.1 Haener Block System – USA 8
2.3.1.2 Azar Block System – Canada
2.3.1.3 Sparlock – Canada
2.3.1.4 The Baker System – Australia
2.3.1.5 Linkblock – South Africa
2.3.2 Soil-Cement Dry-stack Masonry Systems
2.3.2.1 Hydraform – South Africa
2.3.2.2 IPI dry-stack system – Tanzania
2.4 Construction of Dry-Stack Systems
2.5 Properties of Dry-stack Masonry
2.5.1 Compressive Strength
2.5.2 Out-of-plane Behavior of Dry-stack Masonry Walls 30
2.6 General Advantages and Disadvantages of Interlocking Dry-stack Masonry System

	2.6.1 Advantages	34
	2.6.2 Disadvantages	35
	2.7 Prestressing of Masonry Walls	36
	2.7.1 Historical Development of Prestressing	37
	2.7.2 Methods of Prestressing	39
	2.7.2.1 Pretensioning	39
	2.7.2.2 Post-tensioning	39
	2.7.3 Elements of a Post-tensioned Masonry System	39
	2.7.4 Post-tensioning Construction Methods	43
	2.7.4.1 Restrained Construction Method	44
	2.7.4.2 Unrestrained Construction Method	46
	2.7.5 Advantages of Post-Tensioned Masonry	47
	2.7.6 Researches Conducted on Post-Tensioned Masonry	49
	2.8 The Codification of Prestressed Masonry	55
	2.8.1 Code Development	55
	2.8.2 Basic Theory	57
	2.8.3 Permissible Stresses in Prestressing Tendons	58
	2.8.4 Effective Prestress and Prestress losses	58
	2.8.5 Effect of Prestress losses on the Study	60
	2.8.6 Axial Compression and Flexure	60
	2.8.6.1 General	60
	2.8.6.2 Laterally Unrestrained Prestressing Tendons	61
	2.8.6.3 Laterally Restrained Prestressing Tendons	62
	2.8.6.4 Moment Strength Computations	62
	2.9 Needed Research	64
C	HAPTER (3): RESEARCH PLAN AND PRE-TEST ANALYSIS	65
	3.1 Introduction	65
	3.2 Research Plan	65
	3.2.1 Objectives	65

3.2.2 Scope	65
3.3 Test Program	66
3.3.1 Phase (I)	67
3.3.2 Phase (II)	71
3.4 Pre-Test Analysis	74
CHAPTER (4): MATERIALS CHARACTERIZATION	79
4.1 Introduction	79
4.2 Material Testing.	79
4.2.1 Concrete Block Units	79
4.2.1.1 Unit Dimensions	80
4.2.1.2 Compressive Strength	80
4.2.2 Mortar	82
4.2.3 Grout	83
4.2.4 Masonry Prisms	85
4.2.5 Reinforcing Steel for Ordinary Reinforced Walls	91
4.2.6 Post-tensioning Bars	91
CHAPTER (5): CONSTRUCTION AND TESTING OF MASO	NRY
WALLS	93
5.1 Introduction	93
5.2 Specimens Construction and Preparation	93
5.2.1 General Description of Specimens	93
5.2.2 Steel Head Plates	94
5.2.3 Restraining Plates	95
5.2.4 Joint Reinforcement	96
5.2.5 Construction Stages	96
5.3 Test Setup	100
5.3.1 Loading Configuration and Reaction System	100
5.3.2 Test Setup and Instrumentation	101
5 4 Test Procedure	104

CHAPTER (6): TEST RESULTS AND ANALYSIS OF WALL	
RESPONSE 1	06
6.1 Introduction	06
6.2 Test Results for Phase (I) Walls	06
6.2.1 Test Results for Wall "C-OR-FG"	07
6.2.1.1 General	07
6.2.1.2 Failure Mode	07
6.2.1.3 Load versus Mid-span Deflection Curve	07
6.2.2 Test Results for Wall "C-PT-FG-R"1	08
6.2.2.1 General	08
6.2.2.2 Failure Mode	09
6.2.2.3 Load versus Mid-span Deflection	10
6.2.2.4 Testing Load versus Post-tensioning Force Curve	11
6.2.3 Test Results for Wall "C-PT-UG-R"	12
6.2.3.1 General	12
6.2.3.2 Failure Mode	12
6.2.3.3 Load versus Mid-span Deflection	13
6.2.3.4 Testing Load versus Post-tensioning Force Curve	14
6.2.4 Test Results for Wall "C-PT-UG-UR"	15
6.2.4.1 General	15
6.2.4.2 Failure Mode	16
6.2.4.3 Load versus Mid-span Deflection	17
6.2.4.4 Testing Load versus Post-tensioning Force Curve	17
6.2.5 Test Results for Wall "A-OR-FG"	19
6.2.5.1 General	19
6.2.5.3 Load versus Mid-span Deflection	19
6.2.6 Test Results for Wall "A-PT-FG-R"	20
6.2.6.1 General	20
6.2.6.2 Failure Mode	21
6.2.6.3 Load versus Mid-span Deflection	21

6.2.6.4 Testing Load – Post-tensioning Force Curve	. 122
6.2.7 Test Results for Wall "A-PT-UG-R"	. 123
6.2.7.1 General	. 123
6.2.7.2 Failure Mode	. 124
6.2.7.3 Load versus Mid-span Deflection	. 125
6.2.7.4 Testing Load – Post-tensioning Force Curve	. 126
6.2.8 Test Results for Wall "A-PT-UG-UR"	. 127
6.2.8.1 General	. 127
6.2.8.2 Failure Mode	. 128
6.2.8.3 Load versus Mid-span Deflection	. 128
6.2.8.4 Testing Load – Post-tensioning Force Curve	. 129
6.2.9 Test Results for Wall "S-OR-FG"	. 129
6.2.9.1 General	. 129
6.2.9.2 Failure Mode	. 130
6.2.9.3 Load versus Mid-span Deflection	. 130
6.2.10 Test Results for Wall "S-PT-FG-R"	. 131
6.2.10.1 General	. 131
6.2.10.3 Load versus Mid-span Deflection	. 132
6.2.10.4 Testing Load – Post-tensioning Force Curve	. 133
6.2.11 Test Results for Wall "S-PT-UG-R"	. 134
6.2.11.1 General	. 134
6.2.11.2 Failure Mode	. 135
6.2.11.3 Load versus Mid-span Deflection	. 135
6.2.11.4 Testing Load – Post-tensioning Force Curve	. 136
6.2.12 Test Results for Wall "S-PT-UG-UR"	. 137
6.2.12.1 General	. 137
6.2.12.2 Failure Mode	. 138
6.2.12.3 Load versus Mid-span Deflection	. 138
6.2.12.4 Testing Load – Post-tensioning Force Curve	. 139

6.3 Discussion of Phase (I) Test Results	140
6.3.1 General	140
6.3.2 Discussion of Experimental Results	147
6.3.2.1 Effect of Block Type	147
6.3.2.2 Effect of Grout	148
6.3.2.3 Effect of Post-tensioning	149
6.3.2.4 Effect of Restraining of Post-tensioning bars	149
6.3.3 Evaluation of MSJC Design Equations for Flexural Members	150
6.3.3.1 Flexural Behavior	150
6.3.3.2 Shear Behavior	154
6.4 Test Results for Phase (II) Walls	155
6.4.1 Test Results for Wall "C-UR-UG"	155
6.4.1.1 General	155
6.4.1.2 Failure Mode	155
6.4.1.3 Load versus Mid-span Deflection	156
6.4.2 Test Results for Wall "C-JR-UG"	156
6.4.2.1 General	156
6.4.2.2 Failure Mode	157
6.4.2.3 Load versus Mid-span Deflection	157
6.4.3 Test Results for Wall "C-PT-PG"	158
6.4.3.1 General	158
6.4.3.2 Failure Mode	158
6.4.3.3 Load versus Mid-span Deflection	159
6.4.3.4 Testing Load versus Post-tensioning Force Curve	160
6.4.4 Test Results for Wall "S-UR-UG" and "A-UR-UG"	161
6.4.4.1 General	161
6.4.5 Test Results for Wall "A-PT-PG"	163
6.4.5.1 General	163
6.6 Analysis and Discussion of Phase (II) Test Results	164