تقييم نظام تبريد تبخيري للصوب الزراعية تحت ظروف حالة التشغيل المستقرة

رسالة مقدمة من

كملات محمود مرسى محمود بكالوريوس في العلوم الزراعية (هندسة زراعية) - كلية الزراعة - جامعة القاهرة، ٢٠٠٢

للحصول على

درجة الماجستير

في

العلوم الزراعية (هندسة زراعية)

قسم الهندسة الزراعية كلية الزراعة جامعة القاهرة مصر

4 . . 9

تقييم نظام تبريد تبخيري للصوب الزراعية تحت ظروف حالة التشغيل المستقرة

رسالة ماجستير فى العلوم الزراعية (هندسة زراعية)

مقدمة من

كملات محمود مرسى محمود بكالوريوس في العلوم الزراعية (هندسة زراعية) - كلية الزراعة - جامعة القاهرة، ٢٠٠٢

لجنة الإشراف

الدكتور/ محمد هاشم حاتم أستاذ الهندسة الزراعية _ كلية الزراعة _ جامعة القاهرة

الدكتور/ خالد محمد عبدالبارى مدرس الهندسة الزراعية – كلية الزراعة – جامعة القاهرة

تقييم نظام تبريد تبخيري للصوب الزراعية تحت ظروف حالة التشغيل المستقرة

رسالة ماجستير في العلوم الزراعية (هندسة زراعية)

مقدمة من

كملات محمود مرسى محمود بكالوريوس في العلوم الزراعية (هندسة زراعية) - كلية الزراعة - جامعة القاهرة، ٢٠٠٢

لجنة إجازة الرسالة:
د. صلاح مصطفى عبداللطيف أستاذ الهندسة الزراعية _ كلية الزراعة _ جامعة المنصورة.
د.محمد حلمي إبراهيم أستاذ الهندسة الزراعية _ كلية الزراعة_ جامعة الإسكندرية.
د. محمد هاشم حاتم

اسم الطالب: كملات محمود مرسى محمود. الدرجة: الماجستير

عنوان الرسالة: تقييم نظام تبريد تبخيري للصوب الزراعية تحت ظروف حالة التشغيل المستقرة المشرفون: أ.د. محمد هاشم حاتم.

د. خالد محمد عبدا لبارى.

قسم: الهندسة الزراعية.

فرع:المباني الزراعية والتحكم البيئي.

تاريخ منح الدرجة: / /

مستخلص العدب

يهدف هذا البحث إلى دراسة كفاءة نظام التبريد التبخيري داخل الصوب الزراعية تحت ظروف التشغيل المستقرة. حيث تم قياس درجات الحرارة والرطوبة النسبية داخل صوب مختلفة جميعها مبردة بنظام التبريد التبخيري ذو المروحة والوسادة.

وتم تسجيل درجات الحرارة الجافة والرطبة في ثلاثة نقاط في جميع الصوب (أمام الوسادة، وسط الصوبة، أمام المروحة) من الساعة التاسعة صباحاً وحتى الساعة الخامسة مساءاً داخل وخارج كل صوبة وقد تم حساب الرطوبة النسبية وكفاءة التبريد التبخيري.

تراوحت درجات الحرارة الجافة ما بين ٢٥- ٢٦.٥ م° أمام الوسادة وبين ٢٥- ٢٨ م° في الوسط وبين ٢٦- ٢٧ م° داخل الصوبة المبردة (التجربة الثانية). أظهرت النتائج تجانس درجات الحرارة والرطوبة داخل الصوبة الغيبرجلاس المبردة بجميع نقاط القياس.

كما تم حساب درجات الحرارة الداخلية باستخدام معادلة مُشتقة من نموذج رياضي مبسط وقد تم مقارنتها بدرجات الحرارة المُقاسة داخل الصوبة الزراعية وقد أظهرت النتائج تطابق ما بين درجات الحرارة المقاسة والناتجة من النموذج الرياضي مع وجود معدل خطأ متوسطه حوالي $\pm 7.7\%$.

كما تم حساب ومقارنة قيمة الحرارة المحسوسة داخل الصوبة في كلا من نصفيها النصف الأول (من الوسادة إلى المنتصف) والنصف الثاني (من المنتصف إلى المروحة) وقد أظهرت نتائج المقارنة زيادة قيمة الحرارة المحسوسة في النصف الثاني والذي نتج عن زيادة درجات الحرارة كلما ابتعدنا عن الوسادة نتيجة انخفاض الرطوبة النسبية وانخفاض تأثير نظام التبريد التبخيري.

الكلمات الدالة: صوب زراعية – نظام التبريد بالوسادة – تبريد تبخيري – كفاءة التبريد – درجة حرارة متنبأة – سرعة هواء – كثافة الضوء.

EVALUATION OF GREENHOUSES PAD -COOLING SYSTEM UNDER STEADY-STATE CONDITIONS

 $\mathbf{B}\mathbf{y}$

Kamalat Mahmoud Moursy Mahmoud

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., Egypt, 2002

THESIS

Submitted in Partial Fulfillment of the Requirements for the degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Cairo University
EGYPT

2009

APPROVAL SHEET

EVALUATION OF GREENHOUSES PAD - COOLING SYSTEM UNDER STEADY-STATE CONDITIONS

M.Sc. Thesis

By

Kamalat Mahmoud Moursy Mahmoud

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., Egypt, 2002

Approved by:				
Dr. SALAH MOSTAFA ABDEL-ATEF Professor of Agricultural Engineering, Fac. Ag				
Dr. MOHAMED HELMY IBRAHIM Professor of Agricultural Engineering, University				
Dr. MOHAMED HASHEM HATEM Professor of Agricultural Engineering, Fac. of				
	j	Date:	/	/

SUPERVISION SHEET

EVALUATION OF GREENHOUSES PAD -COOLING SYSTEM UNDER STEADY-STATE CONDITIONS

M.Sc. Thesis By

Kamalat Mahmoud Moursy Mahmoud

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., Egypt, 2002

SUPERVISORY COMMITTEE

Dr. MOHAMED HASHEM HATEM
Professor of Agricultural Engineering, Fac. Agric., Cairo University

Dr. KHALED MOHAMED ABDELBARY Assistant Professor of Agricultural Engineering, Fac. Agric., Cairo University Name of Candidate: Kamalat Mahmoud Moursy Mahmoud. Degree: M. Sc. Title of Thesis: Evaluation of Greenhouses Pad-Cooling System Under

Steady-State Conditions.

Supervisors: Prof. Dr. Mohamed Hashem Hatem.

Dr. Khaled Mohamed Abdelbary.

Department: Agricultural Engineering Department.

Branch: Agricultural Buildings and Environmental Control **Approval**: / /

ABSTRACT

This research work aims to investigate the steady-state heat and mass balance for greenhouses that use pad-fan cooling system. It also studied the evaporative cooling system efficiency in different greenhouses. Dry-bulb and wet-bulb temperatures were measured. Relative humidity and cooling efficiency were calculated and the prediction of dry-bulb temperature and relative humidity inside the greenhouse throughout the proposed simple model were performed. Dry-bulb temperature and relative humidity were homogeneous altitude along the fiberglass greenhouse under investigation (16 m long, average of fan air velocity was 5.25 m/s and pad-face air velocity was 1.2 m/s). The obtained results showed that, the predicted data of dry-bulb temperature inside the greenhouse were validated well with that measured.

Dry-bulb temperature and air relative humidity distributions were uniform inside the greenhouse due to optimum structure design (gable - even - span, cover material and greenhouse orientation) and air velocity and appropriate pad area.

The average predicted dry-bulb temperature was close to the measured temperature with \pm 2.7 % standard error. Also, there was a good agreement between measured and predicted values of air relative humidity with standard error of \pm 3.19%.

Moreover, the sensible heat production inside the greenhouses was calculated and compared for the two half's of them (the first half and the second one). The obtained data showed that the sensible heat production increased in the second half of greenhouse (far away from pad system). This increase was due to the increased in the air stream length and the decreased in cooling effect.

Keywords: Greenhouses - Pad Cooling System - Evaporative Cooling - Cooling Efficiency - Predicted Dry-bulb Temperature - Air Velocity - Light Intensity.

DEDICATION

I dedicate this work to whom my heart felt thanks; my parents and brothers for all the support they lovely offered along the period of my post graduate studies.

ACKNOWLEDGEMENT

I am indebted and grateful to **Dr. Mohamed Hashem** Hatem, professor of Agricultural structures and environmental control, Cairo University, for his supervision, moral support throughout the course of the study and the writing of this thesis.

I would like to express my sincere thanks to Dr. Khaled Mohamed Abdelbary, Assistant professor of Agricultural Engineering, Cairo University, for his sincere supervision, encouragement, invaluable guidance, expert advice and continued support through this work. His timely assistance, patience in guiding the research work and reviewing this thesis are greatly appreciated.

My sincere appreciation and thanks to **Dr. Gamal Mansour**, **Dr. Mohamed Rostom** for their ex-supervisory, my grateful acknowledgment to **Dr. Mohamed Ghonemy** and all staff members of Agricultural Engineering Department, Faculty of Agricultural, Cairo University.

My thanks also, due to **Dr. Samar El-Taher** and all staff members of Central Climate laboratory. Genuine thanks for **Dr. Mohamed Abbas Afifi** and all staff members of Economic Affairs Sector, Ministry of Agriculture.

Finally, I would like to express my grateful acknowledgment to my mother, my father and my brothers, for their continuous helpful and support they made to enable me to pursue my studies.

CONTENTS

INTRODUCTION REVIEW OF LITERATURE. 1. Evaporative cooling process. a. Direct Evaporative Cooling Process. b. Indirect Evaporative Cooling Process. c. Indirect Direct Two-Stage Evaporative Cooling Process. 3. Theory of evaporative cooling. 4. Evaporative cooling systems. a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems. 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS. 1. The Greenhouses. b. Second greenhouses. c. Third greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement.	
REVIEW OF LITERATURE. 1. Evaporative cooling process. a. Direct Evaporative Cooling Process. b. Indirect Evaporative Cooling Process. c. Indirect Direct Two-Stage Evaporative Cooling Process. 3. Theory of evaporative cooling. 4. Evaporative cooling systems. a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses. b. Second greenhouses. C. Third greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement.	LIST OF TABLES
1. Evaporative cooling process. a. Direct Evaporative Cooling Process. b. Indirect Evaporative Cooling Process. c. Indirect Direct Two-Stage Evaporative Cooling Process. 3. Theory of evaporative cooling. 4. Evaporative cooling systems. a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouse. b. Second greenhouses. c. Third greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement.	LIST OF FIGURES
REVIEW OF LITERATURE. 1. Evaporative cooling process. a. Direct Evaporative Cooling Process. b. Indirect Evaporative Cooling Process. c. Indirect Direct Two-Stage Evaporative Cooling Process. 3. Theory of evaporative cooling. 4. Evaporative cooling systems. a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. C. Third greenhouses. METHODS. 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement.	INTRODUCTION
a. Direct Evaporative Cooling Process. b. Indirect Evaporative Cooling Process. c. Indirect Direct Two-Stage Evaporative Cooling Process. 3. Theory of evaporative cooling 4. Evaporative cooling systems. a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement. 4. Light Intensity Measurement.	
a. Direct Evaporative Cooling Process. b. Indirect Evaporative Cooling Process. c. Indirect Direct Two-Stage Evaporative Cooling Process. 3. Theory of evaporative cooling. 4. Evaporative cooling systems. a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	1. Evaporative cooling process
b. Indirect Evaporative Cooling Process. c. Indirect Direct Two-Stage Evaporative Cooling Process. 3. Theory of evaporative cooling. 4. Evaporative cooling systems. a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS. 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. METHODS. 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement.	
c. Indirect Direct Two-Stage Evaporative Cooling Process 3. Theory of evaporative cooling	
3. Theory of evaporative cooling 4. Evaporative cooling systems a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses. MATERIALS and METHODS MATERIALS 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement.	
4. Evaporative cooling systems. a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses. MATERIALS and METHODS MATERIALS 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement 2. Relative Humidity Measurement. 3. Air Velocity Measurement. 4. Light Intensity Measurement	
a. Fogging or Misting System. b. Pad and Fan system. c. Other Systems. d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS. 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement.	4. Evaporative cooling systems
b. Pad and Fan system. c. Other Systems d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	a. Fogging or Misting System
c. Other Systems d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal	b. Pad and Fan system
d. Factors Affecting Greenhouse Evaporative Cooling Systems 1. Ventilation Or Air Renewal. 2. Crop Evapotranspiration. 3. Shading and Covering Materials f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
Systems 1. Ventilation Or Air Renewal 2. Crop Evapotranspiration 3. Shading and Covering Materials f. System Efficiency 5. Review of Different Mathematical Models 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses a. First Greenhouses b. Second greenhouses C. Third greenhouses C. Third greenhouses METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
1. Ventilation Or Air Renewal 2. Crop Evapotranspiration 3. Shading and Covering Materials f. System Efficiency 5. Review of Different Mathematical Models 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses a. First Greenhouses b. Second greenhouses C. Third greenhouses C. Third greenhouses METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
3. Shading and Covering Materials f. System Efficiency 5. Review of Different Mathematical Models 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses a. First Greenhouses b. Second greenhouses C. Third greenhouses METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
3. Shading and Covering Materials f. System Efficiency 5. Review of Different Mathematical Models 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses a. First Greenhouses b. Second greenhouses C. Third greenhouses METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	2. Crop Evapotranspiration
f. System Efficiency. 5. Review of Different Mathematical Models. 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS. 1. The Greenhouses. a. First Greenhouses. b. Second greenhouses. C. Third greenhouses. METHODS. 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement. 4. Light Intensity Measurement.	
5. Review of Different Mathematical Models 6. Impact of Greenhouses MATERIALS and METHODS MATERIALS 1. The Greenhouses. a. First Greenhouse. b. Second greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	f. System Efficiency
MATERIALS and METHODS MATERIALS 1. The Greenhouses a. First Greenhouses b. Second greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
MATERIALS and METHODS MATERIALS 1. The Greenhouses a. First Greenhouses b. Second greenhouses C. Third greenhouses METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	6. Impact of Greenhouses
MATERIALS 1. The Greenhouses a. First Greenhouses b. Second greenhouses C. Third greenhouses METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
1. The Greenhouses a. First Greenhouse. b. Second greenhouses. C. Third greenhouses. METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
a. First Greenhouse. b. Second greenhouses. C. Third greenhouses. METHODS. 1. Temperature Measurement. 2. Relative Humidity Measurement. 3. Air Velocity Measurement. 4. Light Intensity Measurement.	
b. Second greenhouses C. Third greenhouses METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
C. Third greenhouses METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
METHODS 1. Temperature Measurement 2. Relative Humidity Measurement 3. Air Velocity Measurement 4. Light Intensity Measurement	
1. Temperature Measurement	e e e e e e e e e e e e e e e e e e e
2. Relative Humidity Measurement.3. Air Velocity Measurement.4. Light Intensity Measurement	
3. Air Velocity Measurement4. Light Intensity Measurement	
4. Light Intensity Measurement	
or Eraporative Cooming Entitionery Calculation	
6. Prediction of air Temperature from the Proposed Model	•

7. Steady-State Sensible Heat Balance	53
8. Steady-State Mass Balance	53
RESULTS AND DISCUSSION	54
1. Measured Temperatures	54
2. Relative Humidity Distribution	69
3. Cooling System Efficiency	85
4. Air Velocity Result Distribution	86
5. Light Intensity in Cooled Fiberglass Greenhouses	90
6. Predicted of Temperature from Proposed simple Model	95
7. Steady-State Sensible Heat Balance	100
8. Steady-State Mass Balance	102
SUMMARY AND CONCLUSIONS	105
REFERENCES	110
LIST OF ABBEREVATIONS AND SYMBOLS	122
APPENDIX	125
ARABIC SUMMARY	148

LIST OF TABLES

NO.	Title	Page
1	Advantages and disadvantages of greenhouse covering	
2	materials Hourly average dry-bulb, wet-bulb temperature, relative	21
	humidity and cooling efficiency for cooled fiberglass	100
3	greenhouse, April 3, 2008	126
	2008	127
4	Hourly average dry-bulb, wet-bulb temperature, relative humidity and cooling efficiency for cooled fiberglass	
~	greenhouse, April 9, 2008	128
5	Hourly average dry-bulb, wet-bulb temperature and relative humidity for ventilated Fiberglass greenhouse, April 9,	
	2008	129
6	Hourly average dry-bulb, wet-bulb temperature, relative	-
	humidity and cooling efficiency for cooled fiberglass	4.00
7	greenhouse, April 10, 2008 Hourly average dry-bulb, wet-bulb temperature and relative	130
,	humidity, for ventilated Fiberglass greenhouse, April 10,	
	2008	131
8	Hourly average dry-bulb, wet-bulb temperature and relative	
	humidity for Fiberglass greenhouses A and B, April 23,	122
9	Hourly average dry-bulb, wet-bulb temperature and relative	132
	humidity for cooled Fiberglass greenhouse C, April 23,	
	2008	133
10	Hourly average dry-bulb, wet-bulb temperature and relative	
	humidity for Fiberglass greenhouses A and B, April 24, 2008	134
11	Hourly average dry-bulb, wet-bulb temperature, relative	134
	humidity and cooling efficiency for cooled Fiberglass	
4.5	greenhouse C, April 24, 2008	135
12	Hourly average dry-bulb, wet-bulb temperature, relative	
	humidity and cooling efficiency for cooled Fiberglass greenhouse A, July 8, 2008	136

.3	Hourly average dry-bulb, wet-bulb temperature, relative humidity and cooling efficiency for cooled Fiberglass	
	greenhouse B, July 8, 2008	137
4	Hourly average dry-bulb, wet-bulb temperature, relative	137
	humidity and cooling efficiency for cooled Fiberglass	
	greenhouse A, July 9, 2008	138
5	Hourly average dry-bulb, wet-bulb temperature, relative	
	humidity and cooling efficiency for cooled Fiberglass	
	greenhouse B, July 9, 2008	139
6	Hourly average dry-bulb, wet-bulb temperature, relative	
	humidity and cooling efficiency for cooled Fiberglass	
	greenhouse A, July 10, 2008	140
7	Hourly average dry-bulb, wet-bulb temperature, relative	
	humidity and cooling efficiency for cooled Fiberglass	1 1 1
O	greenhouse B, July 10, 2008	141
8	Hourly average dry-bulb, wet-bulb temperature, relative	
	humidity and cooling efficiency for cooled Fiberglass greenhouses A and B, May 12,2008	142
9	Hourly average dry-bulb, wet-bulb temperature and relative	142
7	humidity for cooled Fiberglass greenhouse C, May 12,	
	2008	143
20	Average air velocity in ventilated fiberglass greenhouse	
		144
1	Average air velocity in cooled fiberglass greenhouse	144
2	Average air velocity in fiberglass greenhouses (A), (B) and	
	(C)	145
23	Light intensity in cooled fiberglass greenhouses, July 8,	
	2008	145
24	Light intensity in cooled fiberglass greenhouses, July 9,	
_	2008	146
5	Light intensity in cooled fiberglass greenhouses, July 10,	1.4.00
	2008.	1468
6	Mass flow rate of water vapor in cooled fiberglass	1 47
27	greenhouse, April 10, 2008	147
1	Mass flow rate of water vapor in cooled fiberglass	147
	greenhouse, July 9, 2008	147

LIST OF FIGURES

NO.	Title	Pa
1	Fogging or misting system nozzle	:
2a	Evaporative Cooling Pad	1
2b	Pad and Fan evaporative cooling system	1
3	Underground rock storage system for heating and cooling of greenhouse, adapted by Lee et. al, (2002)	1
4	Energy lost and gained in the greenhouse (Adapted by Ibrahim, 2000).	2
5	The glasshouse used in the experimental work (First greenhouse)	4
6	Elevation, plan and side view of glasshouse under investigation	4
7	Plants grow in trays on tables in cooling greenhouse	4
8	Control unit of the cooling system in glasshose (First greenhouse)	۷
9	Water pump of the pad and fan cooling system	_
10	Fiberglass greenhouses site – second greenhouse	2
11	Elevation, Plan and Side View of the modified Qounset greenhouse under investigation	۷
12	Control unit of the cooling system in the Fiberglass greenhouse (second greenhouses)	2
13	Multi-span greenhouses site – third greenhouses (general site)	2
14	Digital thermo-hygrometer	4
15	Digital Tri- Sence Model NO. 3700-0	4
16	Digital Lux-meter (Model No.1330)	4
17	Internal conditions (dry-bulb $(T_{db,i})$ and wet-bulb temperatures $(T_{wb,i})$) versus external conditions for cooled	4
10	glasshouse first greenhouse, June 4, 2006	4
18	Internal Conditions (dry-bulb (T _{db,i}) and wet-bulb	
	temperatures $(T_{wb,i})$ Versus External Conditions for cooled	,
10	glasshouse (first greenhouse), June 5, 2006	-
19	Internal Conditions (dry-bulb (T _{db,i}) and wet-bulb	
	temperatures $(T_{wb,i})$ Versus External Conditions for	
20	glasshouse (first greenhouse), June 6, 2006	
20	Internal conditions (average dry-bulb (T _{db.i}) and wet-bulb	