# Detection of Minimal Residual Disease in Acute Leukemia

#### **Essay**

Submitted for partial fulfillment of the master degree of M. Sc. Degree in Clinical Hematology

*By*:

## Sameh Omara

M.B.B.Ch, Ain shams University

Supervised by

#### Dr. Hoda Ahmed Gad Allah

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

## Dr. Hany Hegab

Assistant Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

### Dr. Walaa Ali El Salakawy

Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University

> > 7.14





First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

This essay would not have been possible without the support of many people. I wish to express my gratitude to my supervisors, **Prof. Dr. Hoda Gad Allah** who was abundantly helpful and offered invaluable assistance, support and guidance.

Deepest gratitude are also due to the members of the supervisory committee, Assoc. Prof. Dr. Hany Hegab and Dr. Walaa Elsalakawy without whose knowledge and assistance these papers would not have been successful.

Special thanks also to the general manager of oncology - hematology hospital in Maadi Armed Forces Medical Compound, **Prof. Dr. Mohammed Khalaf**; ,who learnt me the art of life, and gave me the power and energy to work and read.

I'd also like to convey thanks to my senior colleagues for their support and contineuos encouragement.

I also wish to express my love and gratitude to my beloved wife; for her understanding L endless love, through the duration of my studies.



Sameh Omara

## **Contents**

| List of Abbreviations                                  | 1      |
|--------------------------------------------------------|--------|
| List of Tables                                         | ii<br> |
| List of Figures                                        | iii    |
| Introduction and Aim of the Work                       | ١      |
| Chapter one:                                           |        |
| Introduction and Rationale of minimal residual disease | ٤      |
| Definition of minimal residual disease                 | ٥      |
| Rationale of minimal residual disease testing          | ٦      |
| Acute leukemia:                                        | ٧      |
| Clinical presentation                                  | ٨      |
| Risk factors                                           | ١.     |
| Diagnosis                                              | ۱۳     |
| Principles of treatment                                | ۱۷     |
| Chapter two:                                           |        |
| Detection of MRD in acute myeloid leukemia:            | 19     |
| Introduction                                           | 19     |
| MRD concept                                            | ۲.     |
| Cytogenetics of AML                                    | 70     |
| Methodologies of MRD                                   | 77     |
| FISH technique                                         | ۲۸     |
| Nucleic acid amplification technique                   | ۲۸     |
| Core binding factor leukemias                          | ۳۱     |
| Genetic mutations                                      | ٤٢     |
| Flowcytometry                                          | ٥.     |
| MRD in APL                                             | 00     |
| Conclusion                                             | ٥٨     |
| Chapter three : MRD in acute lymphoblastic leukemia    |        |
| Introduction                                           | ٦.     |
| Rationale and Methodology                              | ٦١     |
| Gene rearrangement                                     | ٦٤     |

| Gene fusion                                                                            | ٦٨ |
|----------------------------------------------------------------------------------------|----|
| Immunophenotypes                                                                       | ٧١ |
| Application of MRD in ALL                                                              | ٧٥ |
| Chapter Four: A Look Into The Future  How and why minimal residual disease studies are |    |
| necessary in leukemia?                                                                 | ٨٢ |
| MRD post allogenic BMT                                                                 | Λ£ |
| Summary                                                                                | ٨٩ |
| References                                                                             | 91 |
| Arabic Summary                                                                         |    |

## **List of Abbreviations**

| ALL                                        | Acute lymphoblastic leukemia                     |  |  |  |
|--------------------------------------------|--------------------------------------------------|--|--|--|
| AML                                        | Acute myeloid leukemia                           |  |  |  |
| APL                                        | Acute promyelocytic leukemia                     |  |  |  |
| ASH                                        | American society of hematology                   |  |  |  |
| BM                                         | Bone marrow                                      |  |  |  |
| CBF                                        | Core binding factor                              |  |  |  |
| CCR                                        | Complete clinical remission                      |  |  |  |
| CLL                                        | Chronic lymphocytic leukemia                     |  |  |  |
| CML                                        | Chronic myeloid leukemia                         |  |  |  |
| CN-AML                                     | Cytogenetically normal acute myeloid leukemia    |  |  |  |
| CR                                         | Complete remission                               |  |  |  |
| DFS                                        | Disease free survival                            |  |  |  |
| DIC                                        | Dessimenated intravascular coagulopathy          |  |  |  |
| FISH                                       | Fluorescence in situ Hybridization:              |  |  |  |
| F-RK                                       | Favorable risk karyotayping                      |  |  |  |
| HSCT                                       | Hematopoetic stem cell transplantation           |  |  |  |
|                                            | nediate risk karyotyping                         |  |  |  |
| LAIPS Leukemia associated immunophenotypes |                                                  |  |  |  |
| MDS                                        | Myelodysplastic syndrome                         |  |  |  |
| MLL                                        | Mixed lineage leukemia                           |  |  |  |
| MRD                                        | Minimal residual disease                         |  |  |  |
| OS                                         | Overall survival                                 |  |  |  |
| PB                                         | Peripheral blood                                 |  |  |  |
| PCR                                        | Polymerase chain reaction                        |  |  |  |
| RQ-PCR                                     | Real time quantitative Polymerase chain reaction |  |  |  |
| U-RK                                       | Unfavorable risk karyotyping                     |  |  |  |

## List of tables

| Table | Title                                              | Page |
|-------|----------------------------------------------------|------|
| 1     | Predicted outcome in patients with acute leukaemia | ١٨   |
| ۲     | Methods of quantitating MRD                        | ۲ ٤  |
| ٣     | Novel prognostic markers in acute myeloid leukemia | ٤٩   |
| ź     | Antibodies currently used to study MRD in ALL      | ٧٤   |
| 0     | Characteristics of three MRD techniques in ALL     | ٧٧   |
| ٦     | Methods for MRD post allogenic BMT                 | ΛY   |

List of Figures

| Fig. | Title                                  | Page |
|------|----------------------------------------|------|
| ١    | Factors that influence response to     | ٧    |
|      | treatment in patients with acute       |      |
|      | leukaemia                              |      |
| ۲    | The MRD concept                        | 77   |
| ٣    | Molecular heterogeneity of CN-AML.     | 77   |
| ٤    | Quantification of mutant NPM\copy      | ٤٥   |
|      | number by PCR                          |      |
| ٥    | Leukemia associated immunophenotypes   | ٥٢   |
|      | pre and post induction                 |      |
| ٦    | Flowcytometry in AML pre and post      | 00   |
|      | induction                              |      |
| ٧    | Use of RQ-PCR to evaluate the quality  | 09   |
|      | of follow-up samples for MRD           |      |
|      | assessment and predict relapse of APL  |      |
| ٨    | Molecular response to treatment an ALL | ٦٣   |
| ٩    | IgH rearrangement and heteroduplex     | 70   |
|      | clonality                              |      |
| ١.   | Molecular response in childhood ALL    | ٧.   |
|      | according to genetic subtaypes         |      |
| ١١   | MRD monitoring strategy at st. Jude    | ٧٨   |
|      | children's research hospital           |      |
| ١٢   | MRD in ALL with aberrant expression    | ۸١   |

## Introduction

**Minimal residual disease(MRD)** is the name given, to small numbers of leukemic cells that remain in patients during treatment or after when the patient is morphologically in remission ,it is the major cause of relapse in leukemia. The tests used to assess/ detect leukemic cell were not sensitive enough to detect MRD. Recently, very senstive molecular biology tests are available- based on DNA , RNA or PROTEINS -and these can measure minute level of malignant cells in tissue samples as low as one malignant cell in million normal cells. (*Frie et al.*, \*\*.\*\*\*).

In cancer treatment particulary leukemia, MRD testing has several important roles: determining whether the treatment has eradicated the cancer or whether traces remain, comparing the efficacy of different regimens of treatment, monitoring the patient remission status and recurrence or relapse of leukemia and choosing the optimal therapy for treatment.(*Haferlach*, \*\*\(\mathcal{T}\)\(\mathcal{T}\).

The tests are not simple, are often a part of research or trials, and some have been accepted for routine clinical use. The common principle underlying all MRD assays is that the leukemogenic process has resulted in molecular and cellular changes that distinguish leukemic cells from their normal

١

counterparts (*Szczepanski al.*, \*\*·\*\*; *Campana*, \*\*·\*\*\*). These leukemia - associated features are identified at diagnosis or at relapse and then used to monitor MRD.

One of the distinguishing features of leukemic cells is the expression of cell markers in abnormal patterns. These abnormal cell profiles are best detected with multiparameters flow cytometry (Campana,  $r \cdot \cdot r$ ).

A second distinguishing feature of leukemic cells is clonal rearrangement of the genes encoding immunoglobulins and T- cell receptors (TCR) proteins .These leukemia-specific molecular signatures can be found in the majority of cases of acute lymphoblastic leukemia (*Pongers-Willemse al.*, 1999).

But in less than '.' of acute myeloid leukemia. Real-time polymerase chain reaction (PCR) is the preferred method for the detection of cells with such rearrangement (van der Valden al., '...').

A third leukemia associated feature can be used to distinguish leukemia from normal cells is presented by chromosomal abnormalities and resulting gene fusions, real time PCR provides the most accurate way to measure their levels (*Gabert al.*, \*\*.\*\*\*).

## Aim of the Work

Review of the recent advances regarding the detection of minimal residual disease in acute leukemia.

## Introduction and Rationale of Minimal Residual Disease

#### **Introduction:**

Patients with acute lymphoblastic or acute myeloid leukemia may harbor up to ''' malignant cells at presentation. With chemotherapy, the majority of both children and adults achieve complete clinical remission (CCR) following the first course of induction therapy. However, even in CCR, patients can still have as many as '' malignant cells in the marrow, and this is responsible for relapse in 'o-Y' of children and o-T' of adults with acute lymphoblastic leukemia (ALL) and in a varying proportion of patients with acute myeloid leukemia (AML).

A variety of methods have been developed to detect malignant cells in patients in CCR, i.e. to detect 'minimal residual disease' with higher sensitivity than morphological method. This conventionally defines CCR by the presence of less than °% blasts in the bone marrow. The goal of more sensitive techniques for MRD detection is to adjust patients' therapy in order to reduce both the risk of relapse and of overtreatment, particularly in children. (*Campana D*, \*\*·\*\*\*\*,

٤

#### **Definition of MRD**;

Minimal residual disease (MRD) is defined as the lowest level of disease detectable in patients in complete clinical remission (CCR) by the methods available (morphological remission). A reliable technique for MRD detection should be specific (discriminate malignant from normal cells), sensitive (able to detect up to one leukemic cell in at least ' normal cells), reproducible (widely applicable in different laboratories) and quantitative (provide a numerical estimate of positive cells).

Submorphologic (ie, minimal) residual disease (MRD) can be monitored in virtually all children and adolescents with acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) using methods such as flowcytometric detection of leukemic immunophenotypes or polymerase chain reaction amplification of fusion transcripts, gene mutations, and clonal rearrangements of antigen-receptor genes. Numerous studies have demonstrated the clinical importance of measuring MRD, spurring the design of clinical trials in which MRD is used for risk assignment and treatment selection.

#### **Rationale For Minimal Residual Disease Testing:**

**M**onitoring response treatment periodic to examination of bone marrow aspirates is an integral part of the clinical management of patients with acute leukaemia. The presence of residual leukaemia and the overall status on normal haematopoiesis, as determined by the cellular appearance of bone marrow smears, provide an indication of the sensitivity of leukaemic cells to chemotherapy and of the degree of haematopoietic regeneration occurring during treatment intervals. Because the morphology of leukaemic cells generally resembles that of normal lymphohaematopoietic progenitors, it is difficult to identify leukaemic cells with confidence. In fact, identification of individual leukaemic cells scattered among normal bone marrow cells might not be possible even for an experienced haemopathologist. (Campana D,  $\gamma \cdot \cdot \cdot \uparrow$ ).