Role of MRI in assessment of adrenal masses

Essay

Submitted For Fulfillment of the Master Degree In Radiodiagnosis

By

Shimaa Hamed Ibrahim Desoukey M.B., B.Ch. Cairo University

Supervised by

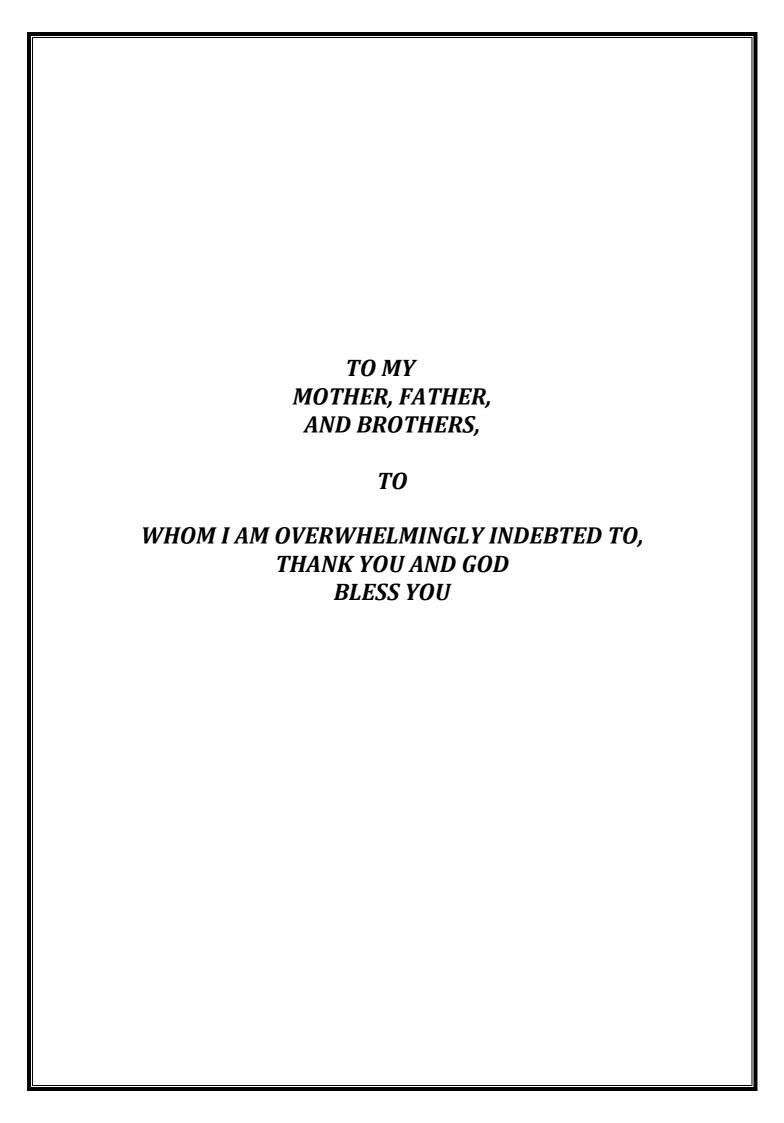
Dr. Maha Khaled Abd El Ghaffar

Assistant Prof. of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Dr. Mohamed Sobhy Hassan

Lecturer of Radiodiagnosis
Faculty of medicine
Ain Shams University

Dr. Ahmed Abd El-Samie Mahmoud


Lecturer of Radiodiagnosis Theodor Bilharz Research Institute

Ain Shams University 2012

بسم الله الرحمن الرحيم

مِّيلِعَال صِّبَهُ مَا يَنَ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الْمَا عَلَيْهُ اللَّهُ الْمَا يَا الْمَا يَا الْمَا يَالْمُولِيةُ " وَمِيكُمُ اللَّهُ اللَّ

حدق الله العظيم سورة البقرة الآية (32)

ACKNOWLEGEMENT

First and foremost, thanks to **Allah**, the most beneficent and most merciful.

I am so grateful to the effort of **Dr. Maha Khaled Abd Elghaffar**, Assisstant Professor of Radiodiagnosis,
Faculty of Medicine, Ain Shams University for accepting
the idea of this work, her efforts and encouragement.

I wish to express my deep thanks to **Dr. Mohamed Sobhy Hassan**, Lecturer of Radiodiagnosis,
Faculty of Medicine, Ain Shams University, for his kind
assistance and continuous beneficial advice.

I also want to express my thanks to **Dr. Ahmed Abd El Samie**, Lecturer of Radiodiagnosis, TBRI for his quidance and kind support.

I would also like to thank all my professors, senior stuff members and fellow colleagues in the Radiodiagnosis department for their support and encouragement.

Finally I would like to thank my entire family for their unlimited support and encouragement, No dedication can match theirs.

LIST OF ABBREVIATIONS

A : Amplitude.

ACC : Adrenocortical carcinomas.

ACTH : Adrenocorticotropic hormone.

ADC : Apparent diffusion coefficient.

AP : Anteroposterior

ASR: The adrenal-to-spleen ratio.

AU : Arbitrary units.

Cho: Choline.

CMV : Cytomegalovirus.

cr : Creatine.

CRH : Corticotrophin releasing hormone.

DWI: Diffusion-weighted imaging.

FH: From feet to head.

FIRM: Fast inversion-recovery motion- insensitive.

FOV: Field of view.

FSE : Fast spin-echo.

GRE : Gradient echo.

HASTE: Breath-hold half-Fourier transform single shot spin-echo.

HU: Hounsefield unit.

Hz: Hertz.

IP : Inphase images.

IV : Intravenous.

LIP : lipid.

II LIST OF ABBREVIATIONS

MIBG : Meta-iodobenzylguanidine.

mmol/kg: Millimol per kilogram.

MPGs: Motion-probing gradients.

MP-RAGE: Magnetization prepared rapid acquisition gradient echo.

MRS: Magnetic resonance spectroscopy.

Msec: Millisecond.

NB: Neuroblastoma.

NTs: Neuroblastic tumors.

OP : Out-of-phase.

P: Probability value.

ppm : Parts per million.

PPNAD: Primary pigmented nodular adrenocortical disease.

PPV : Positive predictive value.

RARE: Rapid acquisition with relaxation enhancement.

RARE : Rapid acquisition with relaxation enhancement.

RF : Radio-frequency.

ROI : Regions of interest.

S/mm2 : Seconds per millimetre squared.

SAR : Specific absorption ratio.

SE : Spin-echo.

SE-EPI-SSh: Single-shot echoplanar technique.

SENSE: Sensitivity encoding.

SGE : Spoiled Gradient-Echo.

SGRE : Spoiled gradient recalled-echo.

Sis : Signal intensities.

SNR : Signal-to-noise ratio.

III LIST OF ABBREVIATIONS

SPIR : Spectrally selective inversion recovery.

SSFSE : Single shot fast spin echo.

T : Tesla.

TE : Echo time.

TR : Repetition time.

Turbo FLASH: Turbo fast low-angle shot.

VS : Versus.

WDHA : watery diarrhea, hypochlorhydria, and alkalosis syndrome.

2D : 2-dimensional.

3D : 3-dimensional.

LIST OF FIGURES

FIGURE 1.1: TRACING PHOTOGRAPH OF A NEONATAL KIDNEY AND ADRENALS	8
FIGURE 1.2: IN SITU LOCATION OF THE ADRENAL GLANDS	9
FIGURE 1.3: NORMAL ANATOMICAL RELATIONSHIP OF THE ADRENAL GLANDS	10
FIGURE 1.4: MICROSCOPIC SECTION DEMONSTRATING THE LAYERS OF THE ADRENAL CORTEX	11
FIGURE 1.5: MICROSCOPIC ANATOMY OF THE ADRENAL GLANDS.	12
FIGURE 1.6: ANATOMICAL RELATIONS OF THE LEFT ADRENAL GLAND DURING AN OPEN SURGERY	14
FIGURE 1.7: ANATOMICAL RELATIONS OF THE RIGHT ADRENAL GLAND DURING AN OPEN SURGERY.	16
FIGURE 1.8: ARTERIAL SUPPLY AND VENOUS DRAINAGE OF THE ADRENAL GLANDS	18
FIGURE 1.10: THE NORMAL ADRENAL GLANDS ON T1W SGRE	20
FIGURE 1.11: NORMAL ADRENAL GLAND BY MRI IC CARCINOMA	23
FIGURE 1.12: RIGHT ADRENAL CORONAL T1-WEIGHTED IMAGE	23
FIGURE 3.1: BENIGN ADRENAL ADENOMAS ON IP AND OP MR IMAGES	24
FIGURE 3.2: NORMAL Y-SHAPED ADRENAL GLAND	50
FIGURE 3.3: DIAGRAM SHOWING DIFFUSION OF WATER MOLECULES	52
FIGURE 3.4: DIAGRAM SHOWING MEASURING WATER DIFFUSION	55
FIGURE 3.4: DIAGRAM SHOWING MEASURING WATER DIFFUSION	56
FIGURE 3.5: PLANNING FOR THE MR SPECTROSCOPY SEQUENCE	62
FIGURE 3.5 CONTINUED: PLANNING FOR THE MR SPECTROSCOPY SEQUENCE	63
FIGURE 3.6: RESPIRATORY ARTIFACTS IN DIFFERENT PATIENTS.	66
FIGURE 4.1: RIGHT ADRENAL ADENOMA	74
FIGURE 4.2: LEFT ADRENAL ADENOMA	75
FIGURE 4.3: WELL-CIRCUMSCRIBED HOMOGENEOUS LEFT ADRENAL ADENOMA	76
FIGURE 4.4: ADRENAL ADENOMA	76
FIGURE 4.5: ADRENAL ADENOMA IN DIFFERENT PULSE SEQUENCES	78
FIGURE 4.6: MRI OF ADRENAL ADENOMAS	80

V LIST OF ABBREVIATIONS

FIGURE 4.6 CONTINUED: IVIKTOF ADRENAL ADENOMAS	81
FIGURE 4.7: ADRENAL CORTICAL CARCINOMA	83
FIGURE 4.7 CONTINUED: ADRENAL CORTICAL CARCINOMA	84
FIGURE 4.8: ADRENAL CORTICAL CARCINOMA, LARGE MASS OF THE LEFT ADRENAL GLAND	85
FIGURE 4.8 CONTINUED: ADRENAL CORTICAL CARCINOMA OF THE LEFT ADRENAL GLAND	86
FIGURE 4.9: ADRENAL HAEMORRHAGE	88
FIGURE 4.10: ADRENAL MYELOLIPOMA	89
FIGURE 4.11: PHEOCHROMOCYTOMA	90
FIGURE 4.11 CONTINUED: PHEOCHROMOCYTOMA	91
FIGURE 4.12: PHEOCHROMOCYTOMA	92
FIGURE 4.13: MRI OF GANGLIONEUROMA	94
FIGURE 4.14: NEUROBLASTOMA	95
FIGURE 4.15: ADRENAL CORTICAL HYPERPLASIA	96
FIGURE 4.16: ADRENAL METASTASIS	97
FIGURE 4.17: ADRENAL METASTASIS FROM RENAL CELL CARCINOMA	97
FIGURE 4.17 CONTINUED: ADRENAL METASTASIS FROM RENAL CELL CARCINOMA	98
FIGURE 4.18: ADRENAL CYST	99
FIGURE 4.19: ADRENAL PSEUDOCYST	100
FIGURE 4.20: LEFT ADRENAL MASS HAEMORRHAGE	100
FIGURE 4.21: LYMPHANGIOMA	101
FIGURE 4.22: DIFFERENT ADRENAL CYSTIC LESIONS	102
FIGURE 4.22 CONTINUED: DIFFERENT ADRENAL CYSTIC LESIONS	103
FIGURE 4.23: ADRENAL HISTOPLASMOSIS	104
FIGURE 4.24: BILATERAL LYMPHOMATOUS DEPOSITS	104
FIGURE 4.25: BOX PLOT OF ADC VALUES FOR LIPID-RICH AND LIPID-POOR ADRENAL ADENOMA.	106
FIGURE 4.26: 57-YEAR-OLD MAN WITH LIPID-POOR ADRENAL ADENOMA	107
FIGURE 4.27: FEMALE PATIENT WITH LIPID-RICH ADRENAL	107
FIGURE 4.28: MALE PATIENT WITH ADRENAL METASTASIS FROM HEPATOCELLULAR CARCINOMA.	108

VI LIST OF ABBREVIATIONS

FIGURE 4.29: MALE PATIENT WITH ADRENAL CORTICAL CARCINOMA	. 109
FIGURE 4.30: BOX PLOT SHOWS ADC VALUES FOR DIFFERENT TYPES OF ADRENAL LESIONS	.109
FIGURE 4.31: POINT-RESOLVED MULTIVOXEL MR SPECTROSCOPY OF ADRENAL ADENOMA	.112
FIGURE 4.32: RECEIVER OPERATING CHARACTERISTIC CURVES FOR DIFFERENT ADRENAL LESION	. 113
FIGURE 4.33: POINT-RESOLVED MULTIVOXEL MR IN ADRENAL PHEOCHROMOCYTOMA	.116
FIGURE 4.34: POINT-RESOLVED MULTIVOXEL MR IN ADRENAL CARCINOMA	.116
FIGURE 4 35: POINT-RESOLVED MULTIVOXEL MR IN ADRENAL METASTASIS	117

LIST OF TABLES

Table 4.1: Staging of adrenal carcinoma	84
Table 4.2: Comparison of MR Spectroscopy Choline-Creatine Ratio Results	114
Table 4.3: Comparison of MR Spectroscopy Choline-Lipid Ratio Results	114
Table 4.4: Comparison of MR Spectroscopy Lipid-Creatine Ratio Results	114
Table 4.5: Comparison of MR Spectroscopy 4.0 – 4.3 ppm/Creatine Ratio	115

CONTENTS

Title	Page No.
Introduction and Aim of the work	1
Chapter one: Anatomy of the adrenal gland	6
Chapter two: Pathology of adrenal masses	25
Chapter three: MRI techniques of adrenal masses.	43
Chapter four: MRI imaging findings of adrenal mas	ses73
Summary & Conclusion	118
References	121
Arabic summary	

1 INTRODUCTION AND AIM OF WORK					
		INTRODUCTION AND AIM OF WORK			

INTRODUCTION

Adrenal masses are common incidental findings in patients undergoing computed tomographic (CT) or magnetic resonance imaging (MRI) examinations for other purposes (Mansmann et al., 2004).

Adrenal lesions can be categorized as primary or metastatic, benign or malignant and functioning or nonfunctioning (Young et al., 2007).

The majority of adrenal masses is asymptomatic adenomas, and therefore is usually detected on radiological examinations for indications unrelated to the adrenal glands (Savci et al., 2006).

The adrenal glands are also common sites of metastases during the course of several malignant tumors (Savci et al., 2006); adrenal metastasis might contraindicate a curative treatment of the patient and affect survival (Mitchell et al., 2007).

Difficulties exists with adrenal imaging remain not only for diagnosis of atypical adenomas but also for detection of other adrenal alterations, such as metastases, pheochromocytomas, and adrenocortical carcinomas (*Faria et al.*, 2007).

Adrenal imaging techniques include Unenhanced and contrast material—enhanced CT, MR imaging, and fluorine 18 fluorodeoxyglucose positron emission tomography (PET) (Faria et al., 2007).

Sequential noncontrast and contrast-enhanced CT studies are useful for differentiating 'true' adrenal masses from so-called 'pseudo' tumors, which are created by adjacent structures and for evaluating contrast-enhancement patterns (retention and washout of contrast medium) of adrenal masses (*Boland et al.*, 2008).

The three-phase CT entails the use of an iodinated IV contrast agent and additional radiation exposure. There is considerable clinical and public interest, and some concern, in the risk of radiation from imaging and CT in particular (Sandrasegaran et al., 2011).

Co-registered PET CT studies using a variety of radiopharmaceuticals targeted at various characteristics of adrenocortical and adrenomedullary function provide additional ways of evaluating adrenal masses. These studies simultaneously combine anatomic cross-sectional information with functional, scintigraphic maps, which can improve the differentiation of benign from malignant lesions (*Gross et al., 2009*).

MRI is frequently used to characterize incidentally discovered adrenal masses, especially in instances for which CT is nondiagnostic, such as in the patient with metallic clip artifacts or complex masses with variable density (*Boland et al.*, 2008).