Assessment of Estimated GFR and Clinical Predictors of Contrast Induced Nephropathy among Diabetic Patients Undergoing Cardiac Catheterization

Thesis

Submitted for Partial Fulfillment of Master's Degree of Cardiology

Βγ Wesam Samir Al Ghonaimy M.B.B.Ch.

Under Supervision of

Prof. Dr. Mohamed Tarek Zaki

Professor of Cardiology Ain Shams University

Dr. Ayman Samir Sadek

Assistant Professor of Cardiology Ain Shams University

Dr. Tarek Rashed Mohamed

Lecturer of Cardiology Ain Shams University

Ain Shams University 2013

First and foremost, I thank God for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to **Prof. Dr. Mohamed Tarek Zaki,** Professor of Cardiology, Ain Shams University, for his great support and stimulating views. His active, persistent guidance and overwhelming kindness have been of great help throughout this work.

A special tribute to Assistant Professor Dr. Ayman Samir Sadek, Assistant Professor of Cardiology, Ain Shams University, for his supervision and advice.

I must extend my warmest gratitude to **Dr. Tarek Rashed Mohamed**, Lecturer of Cardiology, Ain Shams University, for his great help and faithful advice. His continuous encouragement was of great value and support to me.

Last but definitely not least, I would like to thank my family for always being there for me and for all the suffering and hardships. To them I owe my life.

Wesam Al Ghonaimy

List of Contents

Title	Page No.
Introduction	1
Aim of the work	2
Review of Literarture	
Contrast-Induced Nephropathy	3
Contrast Media	32
Preventive Treatments	49
Patients and Methods	91
Results	103
Discussion	143
Conclusions	158
Recommendations	160
Summary	161
References	163
Arabic Summary	

List of Tables

Table No.	Title Page	No.
Table (1):	Rates of hemodialysis and death after contrast-induced nephropathy reported in the different clinical trials	11
Table (2):	Properties of some of the commonly used contrast media	34
Table (3):	Studies comparing high, low and iso- osmolar contrast media in contrast nephropathy	44
Table (4):	Effectiveness of saline hydration, forced diuresis or both in preventing CIN	57
Table (5):	Prospective studies of NAC versus placebo in which a beneficial effect was shown	64
Table (6):	Prospective studies of NAC versus placebo in which a beneficial effect was not shown	65
Table (7):	Effectiveness of the vasodilators aminophylline and theophylline in preventing CIN	76
Table (8):	Effectiveness of low dose dopamine, as a vasodilator, in preventing CIN	
Table (9):	Effectiveness of the vasodilator fenoldopam in preventing contrast-induced nephropathy	81
Table (10):	Summary of strategies/agents evaluated to prevent CIN	
Table (11):	Characteristics of different Ioversol preparation in market	95
Table (12):	Patients demographic data	104
Table (13):	Incidence of CAD risk factors	
Table (14):	Serial measurements of S.Creatinine and Cr Cl	108

List of Tables (Cont...)

Table No.	Title Page 1	Vo.
Table (15):	Classification of patients according to their Creatinine Clearance	109
Table (16):	Extent of Coronary Artery disease	111
Table (17):	Systolic and diastolic blood pressure among the patients.	111
Table (18):	CIN incidence among the study group	112
Table (19):	Incidence of CIN among Coronary angiography and PCI patients	113
Table (20):	Comparison between patients who had Primary PCI and CIN	
Table (21):	The gender as a risk predictor of CIN	
Table (22):	Relation between age and CIN	118
Table (23):	Relation between smoking and CIN	119
Table (24):	Relation between family history of ischemic heart disease and CIN	120
Table (25):	Relation between treatment of diabetes and CIN	121
Table (26):	Relation between HTN and CIN	
Table (27):	Relation between hypotension and CIN	123
Table (28):	Mean systolic and diastolic blood pressure among examined patients in relation to	
	CIN	124
Table (29):	Relation between ACE and CIN.	125
Table (30):	Relation between NSAID and CIN	126
Table (31):	Hemoglobin level in relation to CIN	
Table (32):	Relation between anemia and CIN	128
Table (33):	Relation between EF and CIN patients	129
Table (34):	Relation between EF and CIN patients.	130

List of Tables (Cont...)

Table No.	Title Page	No.
Table (35):	Relation between contrast volume and CIN patients.	
Table (36):	Relation between contrast volume and CIN	
Table (37):	Serial serum creatinine and CrCl in relation to CIN patients	
Table (38):	Relation between preprocedural creatinine clearance at day one and CIN.	
Table (39):	Mean of V/eGFR among CIN positive and Negative patients	
Table (40):	Relation between V/eGFR and CIN	136
Table (41):	Relation between number of vessels treated and CIN	
Table (42):	Relation between number of stents and CIN	
Table (43):	Logistic regression analysis for prediction of CIN	
Table (44):	Morbidity and Mortality among study group	

List of Figures

Fig. No.	Title Page 1	No.
Fig. (1):	Diagram showing proposed pathophysiologic mechanisms for the development of contrast-induced nephropathy	13
Fig. (2):	Proposed radiology department pre- procedural appointment and checklist	26
Fig. (3):	Schematic representation of the contrast-induced nephropathy risk score	31
Fig. (4):	Contrast Agents	35
Fig. (5):	Chemical structure of IOVERSOL	96
Fig. (6):	Although normal S. Creatinine 21 % of patients had a degree of renal impairment before the procedure.	109
Fig. (7):	Incidence of CIN in the study	112
Fig. (8):	Incidence of CIN among Coronary angiography and PCI patients.	113
Fig. (9):	Comparison between patients who had Primary PCI and CIN	114
Fig. (10):	Incidence of CIN among both gender	116
Fig. (11):	ROC curve showing cutoff value of 57 years as a predictor for CIN	117
Fig. (12):	The age of 57 as a predictor of CIN	118
Fig. (13):	No significant correlation between smoking and developing CIN.	119
Fig. (14):	No correlation between family history of IHD and developing CIN	120

List of Figures (Cont...)

Fig. No.	Title Page	No.
Fig. (15):	Relation between treatment of diabetes and CIN.	122
Fig. (16):	Relation between HTN and CIN	123
Fig. (17):	Hypotension as a risk predictor for CIN	124
Fig. (18):	Relation between ACE and CIN	126
Fig. (19):	Relation between NSAID and CIN	127
Fig. (20):	Relation between Anemia and CIN	128
Fig. (21):	Patients having Ef<50 % were more among CIN Patients.	130
Fig. (22):	Relation between contrast volume and CIN.	132
Fig. (23):	Relation between preprocedural creatinine clearance at day one and CIN	134
Fig. (24):	Cut-off point, sensitivity, specificity, for V/eGFR in prediction of CIN patients	135
Fig. (25):	Relation between V/eGFR and CIN	136
Fig. (26):	Relation between number of vessels treated and CIN.	137
Fig. (27):	Relation between number of stents and CIN.	138

List of Abbreviations

Abb. Full term

ACC	American college of cardiology
AHA	American heart association
ANP	Atrial natriuretic peptide
ARF	Acute renal failure
BL	Baseline value
CA	Coronary angiography
Ca ²⁺	Calcium ion
CHF	Congestive heart failure
CI	Confidence interval
CIN	Contrast-induced nephropathy
Cm	Centimeter
CO ₂	Carbon dioxide gas
Cr Cl	Creatinine clearance level
CT	Computed tomography
DBP	Diastolic blood pressure
dL	Deciliter
DM	Diabetes mellitus
ECG	Electrocardiogram
eGFR	Estimated glomerular filtration rate
GFR	Glomerular filtration rate
Grp	Group
НОСМ	High osmolar contrast medium
HS	Highly significant

Ht	Height
IABP	Intra-aortic balloon pump counterpulsion
in	Inch
IOCM	Iso osmolar contrast medium
kg	Kilogram
LD_{50}	Lethal dose 50
LOCM	Low osmolar contrast medium
mg	Milligram
mmHg	Millimeter mercury
Na	Sodium
NAC	N-Acetyl cysteine
NO	Nitric oxide
NS	Non-significant
NSAIDs	Non steroidal anti-inflammatory drugs
\mathbf{O}_2	Oxygen
p	Probability of chance
PCI	Percutaneous coronary intervention
S.Cr	Serum creatinine level
SBP	Systolic blood pressure
SD	Standard deviation
VOL	Volume of contrast media administered
Wt	Weight
%	Percentage
μmol	Micro-mole

INTRODUCTION

ontrast-induced nephropathy is a leading cause of morbidity and mortality in high-risk patients undergoing any procedure involving the use of radiographic contrast media (Cavusoglu et al., 2004).

Subjects who develop this complication have higher rates of mortality, longer hospital stays and worse long-term outcomes (Mehran et al., 2004).

The occurrence of contrast-induced nephropathy is related to the number of the patients' co-existing clinical risk factors. Among the many risk factors, pre-existing renal impairment, advancing age, the presence of diabetes mellitus as well as the volume and type of contrast agent administered are the most important (Cavusoglu et al., 2004).

The precise pathophysiologic mechanisms responsible for the development of contrast-induced nephropathy are complex and incompletely understood. At present, the only available tool for reducing the risk of developing contrast-induced nephropathy is prevention. This can be achieved by means of adequate periprocedural hydration, using N-acetyl cysteine as well as the selection of low osmolar or iso-osmolar contrast agents in the least amount possible. Other agents are still being tested for this purpose as well (Harjai et al., 2008).

AIM OF THE WORK

o study different risk predictors of contrast induced nephropathy, among diabetic patients with normal serum creatinine undergoing cardiac catheterization.

To asses the volume of contrast in relation to eGFR as a predictor of CIN and the cut off value that can be used as a risk predictor for occurrence of CIN.

To follow up the occurrence of major adverse cardiac events (mortality, reinfarction, stroke, target vessel revascularization) during one month of hospital discharge.

Chapter (1)

CONTRAST-INDUCED NEPHROPATHY

Historical background

early seventy years ago, Osborne et al first reported the imaging of the urinary tract using iodinated contrast material (Osborne et al., 1983). Over the past 30 years, there has been a marked increase in diagnostic and interventional procedures in which iodinated contrast was used (Gleeson and Bulugahapitiya, 2004).

The structure of radiocontrast agents has been modified over the last several decades, yielding compounds with significantly less chemotoxicity. Unfortunately, the administration of even the newest radiocontrast agents may cause nephrotoxicity (Gleeson and Bulugahapitiya, 2004).

Contrast-induced nephropathy has become a significant source of hospital morbidity and mortality with the ever-increasing use of iodinated contrast media in diagnostic imaging and interventional procedures such as coronary angiography. It ranks third amongst the causes of hospital-acquired acute renal failure, after surgery and hypotension (*Barrett*, 1994).

Unfortunately, it is frequently the high risk patients; particularly those with preexisting renal insufficiency and diabetes mellitus; which are encountered by the cardiovascular and interventional radiologist (Gleeson and Bulugahapitiya, 2004).

Definitions

Defining contrast-induced nephropathy has proven to be quite challenging and many studies have put forward various suggestions (Barrett, 1994).

Lautin et al. (1991) used six separate definitions with criteria ranging from an increase in serum creatinine level of more than 0.3 mg/dL to an increase of 2.0 mg/dL or more and found that the more restrictive higher cut-off point to be less sensitive for predicting incidences of contrast-related renal dysfunction.

A new definition of contrast nephropathy in patients undergoing percutaneous coronary intervention was recently proposed by Harjai et al. (2008). This tripartite definition classifies contrast nephropathy as:

- Grade 0 (serum creatinine increase <25% above baseline and <0.5 mg/dL above baseline).
- Grade 1 (serum creatinine increase >25% above baseline and <0.5 mg/dL above baseline).
- Grade 2 (serum creatinine increase >0.5 mg/dL above baseline).

This classification is prognostic of long-term outcomes of patients after percutaneous coronary intervention. Patients with grade 2 nephropathy had the worst outcome while those with grade 0 nephropathy had the best outcome on long-term follow-up (Harjai et al., 2008).

Hence contrast-induced nephropathy has become most commonly defined as "impairment of renal function occurring within 48 hours after administration of radiographic contrast media which is maintained for 2 to 5 days. It is manifested by an absolute increase in the serum creatinine level of at least 0.5mg/dL (44.2 µmol/L), or by a relative increase of at least 25% over the baseline value in the absence of another cause (Kolonko et al., 1998).

This definition may in part account for the large number of cases reported showing only transient elevations of serum creatinine levels or at least elevations that do not require dialysis. Although this large number has led to questioning of the clinical relevance of such rises, these subtle changes have been shown to be associated with significant morbidity rates and, in addition, may help to identify those with borderline renal function who may be at risk of developing fulminant renal failure in the future (Lautin et al., 1991).

Ideally, the impairment of renal function should be measured by serial creatinine clearance, but because this step may be neither practical nor cost-effective in many centers,