Liver Trauma inCirrhotic Patients

Essay

Submitted for partial fulfillment of master degree in General surgery

Вy

Mohammed Mostafa Mohammed ElshiekhAly M.B.B.Ch., Menoufia University

Supervised by

Prof. Dr. AlaaEldin Ismail

Professor of general surgery
Faculty of Medicine - Ain Shams University

Prof. Dr. Osama Fouad Mohammed

Professor of general surgery
Faculty of Medicine - Ain Shams University

Dr. Anas Hassan Meshal

Lecturer of general surgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2013

Acknowledgment

I would like to express my sincere appreciation to **Prof. Dr. AlaaEldin Ismail** for his great support and guidance in producing this work. It was an honour to me to carry out this work under his continuous guidance and expert supervision. I learnt a lot both practically and scientifically from him, such support will never be forgotten.

I would like to thank **Prof. Dr. Osama Fouad Mohammed** for his guidance, precise instructions and kind encouragement during the preparation of this work.

Special thanks to **Dr. Anas Hassan Meshal** for his great help, advices and fruitful suggestions throughout this work. Such support will never be forgotten.

Aim of the work

This work aims to discuss the recent management of liver trauma with emphasis on cirrhotic patients

Contents

	Page
Introduction	1
Liver trauma	3
Hepatic surgical anatomy	3
Epidemiology and pathophysiology	15
Classification of liver trauma	19
Diagnosis of liver trauma	27
Management of liver trauma	48
Cirrhosis	98
Trauma in cirrhotic patient	135
Impact of cirrhosis on trauma patient	135
Identification of cirrhosis in trauma	141
Shock and coagulopathy in cirrhotic	
trauma patient	148
Nutrition in cirrhotic trauma patient.	158
Surgery in cirrhotic trauma patient	173
Management of liver trauma in	
cirrhotic patient	199

Conclusions	209
References	211
Arabic summary	

List of abbreviations

AAST American Associatn for the Surgery of Trauma

AE Angio Embolization
ALF Acute Liver Failure
ALP Alkaline Phosphatase
ALT Alanine Transaminase

APTT Activated Partial Thromboplastin Time **ARDS** Acute Respiratory Distress Syndrome

AST Aspartate Transaminase

ATLS Advanced Trauma Life Support

BAT Blunt Abdominal TraumaBCAA Branched Chain Amino Acid

BCM Body Cell Mass

BIA Bioelectrical Impedance Analysis

BUN Blood Urea Nitrogen CBC Complete Blood Count

COPD Chronic Obstructive Pulmonary Disease

CT Computerised Tomography

CTP Child-Turcotte-Pugh

DDAVP 1-Deamino-8-D-arginine VasopressinDEXA Dual Energy X-ray Absorptiometry

DIC Disseminated Intravascular Coagulation

EAST Eastern Association for the Surgery of Trauma

ECM Extra Cellular Matrix
ED Emergency Department

EN Enteral Nutrition

ERCP Endoscopic Retrograde Cholangio-

Pancreatography

ESLD End Stage Liver Disease

FAST Focused Abdominal Sonography of Trauma

FFP Fresh Frozen Plasma

HCC Hepato- Cellular Carcinoma

HCT Hematocrit

HCV Hepatitis C Virus

HE Hepatic Encephalopathy

HIV Human Immunodeficiency VirusHPS Hepato- Pulmonary Syndrome

HRS Hepato- Renal Syndrome

HSC Hepatic Stellate Cell

HVPG Hepatic Vein Pressure Gradient

IAC International Ascites ClubIAP Intra-Abdominal Pressure

ICU Intensive Care Unit

IEDS Immune-Enhancing Diet

IVC Inferior Vena Cava

IVNAA In Vivo Neutron Activation Analysis

LC Liver Cirrhosis

LCT Long-Chain TriglyceridesLWE Local Wound ExplorationMCT Medium Chain Triglyceride

MELD Model for End-Stage Liver Disease

MMPS matrix metalloproteinases

MPAP Mean Pulmonary Artery pressure MRI Magnetic Resonance Imaging

MVCs Motor Vehicle Crashes

NAFLD Non-Alcoholic Fatty Liver DiseaseNASH Non-Alcoholic Steato Hepatitis

NI Nutritional Intervention

NO Nitrous Oxide

NOM Non-Operative Management

NSAID Non-Steroidal Anti Inflammatory Drug

ONS Oral Nutrition Supplements
PDGF Platelet Derived Growth Factor

PEG Percutaneous Endoscopic Gastrostomy

PFA Platelet Function Analyser

PN Parenteral Nutrition
PT ProthrombinTime
rFVIIa Recombinant FVIIa

SBP Spontaneous Bacterial Peritonitis
SGA Subjective Global Assessment

SIRS Systemic Inflammatory Response Syndrome

TAE Trans-Arterial catheter Embolization

TAP Transversus Abdominis Plane

TF Tube Feeding

TGF- β1 Transforming Growth factor β1 **TIBC** Total Iron-Binding Capacity

TIMPs Tissue Inhibitors of MetalloProteinases

TIPS TransjagularIntrahepatic PortosystemicShunt

TPN Total Parenteral nutrition **VWF** Von Willebrand Factor

Introduction

The liver is the largest solid abdominal organ with a relatively fixed position, which makes it prone to injury. Damage to the liver is the most common cause of death after abdominal injury. The most common cause of liver injury is blunt abdominal trauma, which is secondary to motor vehicle crashes (MVC). The liver is frequently injured following abdominal trauma and associated injuries contributes ignificantly to mortality and morbidity, and may cause the liver injury to be masked and diagnosis delayed (Zargar and Laal, 2010).

Hepatic trauma represents a significantmanagement challenge that requires a high index of suspicion, rapid investigation, accurate classification well-defined management protocols (*Hamdy et al.*, 2012).

In the past, most liver injuries were treated surgically. However evidence confirms that about 86% of liver injurieshave stopped bleeding by the time surgical exploration is performed and 67% of laparotomies done for blunt traumaof the abdomen are non-therapeutic. Imaging techniquesespecially Computerised Tomographic Scan (CT)

has createdremarkable impact in managing liver trauma patients byreducing the number of laparotomies. About 80% ofadults and 97% of children are presently managed conservatively worldwide at high volume trauma centres (*Kumar et al.*, 2007).

Liver cirrhosis is the tenth leading cause of death. Although cirrhosis-related deaths have decreased over the years, the impact of cirrhosis remains with approximately30000 deaths annually(*Chen et al.*, 2007).

Cirrhotic patient with trauma cause unique problems and challenges to the trauma surgeon, especially in abdominal traumas requiring emergent laparotomy. (*Linet al.*, 2012)

Cirrhotic patients often suffer from complications. Cirrhosis impairs nutrition, alters response to stress, and affects the functions of other organ systems (*Chen et al.*, 2007).

Liver cirrhosis has been identified as a significant risk factor of increasing morbidity and mortality in trauma patients (*Lin et al., 2012*).

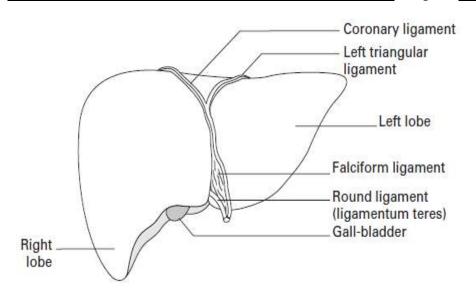
Hepatic surgical anatomy

Comprehensive knowledge of hepatic anatomy is essential to the proper management of traumatic liver injuries. The understanding of the ligamentous attachments, parenchyma, and intra and extraparenchymal vascularity of the liver is key to the effective application of methods for control and repair in liver injuries (*Fabian and Bee, 2008*).

Position of the liver

The liver is the largest organ in the body, weighing approximately 1500 g. It sits in the right upper abdominal cavity beneath the diaphragm and is protected by the rib cage. It is reddish brown and is surrounded by a fibrous sheath known as Glisson's capsule(*Geller*, 2010).

Surfaces of the liver


It is related by its domed upper surfaceto the diaphragm, which separates it from pleura, lungs, pericardium andheart. Its postero-inferior (or visceral) surface abuts against the abdominaloesophagus, the stomach,

duodenum; hepatic flexure of colon and the rightkidney and suprarenal, as well as carrying the gall-bladder. The liver is divided into a larger right and small left lobe, separated superiorly by the falciform ligament and postero-inferiorly by an H-shapedarrangement of fossae:

- anteriorly and to the right: the fossa for the gall-bladder
- posteriorly and to the right: he groove in which the inferior vena cava lies embedded
- anteriorly and to the left: the fissure containing the ligamentumteres
- Posteriorly and to the left: the fissure for the ligamentum venosum

The cross-bar of the H is the portahepatis. Two subsidiary lobes are marked out on the visceral aspect of the liver between the limbs of this H the quadrate lobe in front and the caudate lobe behind (*Ellis*, 2006).

Liver trauma 5

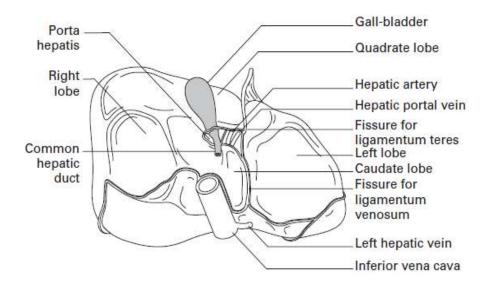


Figure (1): Surfaces of the liver (Ellis, 2006).

Peritoneal attachment

The liver is held in place by several ligaments. The round ligament is the remnant of the obliterated umbilical vein and enters the left liver hilum at the front edge of the falciform ligament. The falciform ligament separates the left lateral and left medial segments along the umbilical fissure and anchors the liver to the anterior abdominal wall. Deep in the plane between the caudate lobe and the left lateral segment is the fibrous ligamentum venosum, which is the obliterated ductus venosus and is covered by the plate of Arantius. The left and right triangular ligaments secure the two sides of the liver to the diaphragm. Extending from the triangular ligaments anteriorly on the liver are the coronary ligaments. The right coronary ligament also extends from the right undersurface of the liver to the peritoneum overlying the right kidney, thereby anchoring the liver to the right ligaments retroperitoneum. These (round, falciform. triangular, and coronary) can be divided in abloodless plane mobilize fully the liver to facilitate hepatic to resection(Geller, 2010).

Centrally and just to the left of the gallbladder fossa, the liver attaches via the hepatoduodenal and hepatoduodenal gastrohepatic ligaments. The ligament contains the common bile duct, the hepatic artery, and the portal vein. From the right side and deep (dorsal) to this ligament is the foramen of Winslow, also known as the epiploic foramen. This passage connects directly to the lesser sac and allows complete vascular inflow control to the liver when the hepatoduodenal ligament is clamped using the Pringle maneuver(Geller, 2010).

Segmental Anatomy

The liver is grossly separated into the right and left lobes by the plane from the gallbladder fossa to the inferior vena cava (IVC), known as Cantlie's line. The right lobe typically accounts for 60 to 70% of the liver mass, with the left lobe (and caudate lobe) making up the remainder. The caudate lobe lies to the left and anterior of the IVC and contains three subsegments: the Spiegel lobe, the paracaval portion, and the caudate process. The falciform ligament does not separate the right and left lobes, but rather it divides