

Evaluation of peripapillary retinal nerve fiber layer thickness in relation to axial length in myopic eyes using the optical coherence tomography

Thesis
Submitted for partial fulfillment of
M.D. Degree in Ophthalmology

By

Weam Mohamed Ahmed Ebeid

M.B., B.Ch., M.Sc. Ophthalmology Faculty of Medicine, Ain Shams University

Supervised by Prof. Doctor: Tarek Mohamed Abdalla

Professor of Ophthalmology Faculty of medicine, Ain-Shams University

Prof. Doctor: Fikry Mohamed Zaher

Professor of Ophthalmology Faculty of medicine, Ain-Shams University

> Faculty of Medicine Ain Shams University Cairo, Egypt 2012

ACKNOWLEDGEMENTS

First and foremost, Thanks to ALLAH, to whom I relate any success in achieving any work in my life.

would like to Then, I express my utmost appreciation to Prof Dr **Tarek** and **Abdullah,** Professor of Ophthalmology, Faculty of for Ain Shams University, his sincere encouragement and stimulating views.

I am faithfully grateful to **Prof Dr Fikry Zaher**, Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his for his immeasurable patience and instructive guidance.

I would like to express my deepest gratitude for **Dr Amani El Shazli**, Lecturer of Ophthalmology, Ain Shams University, for her great and kind help in performing statistics of this thesis.

I wish to extend my thanks to all the staff members of the department of Ophthalmology, my colleagues who kindly helped me to complete this work.

Last but not least I would like to thank my lovely family, the unknown soldiers without whom this work would never have seen the light.

LIST OF CONTENTS

IST OF TABLES		OF FIGURES	II
ROTOCOL			
NTRODUCTION			
 EVIEW			
 Chapter 1: Anatomy Chapter 2: Myopia Chapter 3: Assessment of glaucoma patient with myopia Chapter 4: RNFL in glaucoma suspects Chapter 5: Other Factors affecting RNFI thickness Chapter 6: Retinal nerve fiber layer 			
 Chapter 2: Myopia			
	:	Chapter 2: Myopia Chapter 3: Assessment of glaucoma with myopia Chapter 4: RNFL in glaucoma suspects Chapter 5: Other Factors affecting thickness Chapter 6: Retinal nerve fiber	14 patient2032 RNFI37

ISCUSSION	
ONCLUSION	134
UMMARY	136
EFERENCES	139
RABIC SUMMARY	j

LIST OF ABBREVIATIONS

Abb.	Definition	
3D	3 dimensional	
ARP	Atypical retardation pattern	
AXL	Axial length	
BCVA	Best corrected visual acuity	
C/D	Cup/disc	
CCT	Central corneal thickness	
cm	Centimeter	
D	Diopters	
dB	Decibel	
DM	Diabetes mellitus	
DR	Diabetic retinopathy	
ECC	Enhanced corneal compensation	
FD	Fourier domain	
Fig	Figure	
GAT	Goldmann applanantion tonometer	
GCC	Ganglion cell complex	
GCL	Ganglion cell layer	
IOP	Intraocular pressure	
mm	Millimeters	

mmHg	Millimeter mercury
NFL	Nerve fiber layer
OCT	Optical coherence tomography
OD	Optic disc
OHT	Ocular hypertension
ONH	Optic nerve head
POAG	Primary open angle glaucoma
PPA	Peripapillary atrophy
RGC	Retinal ganglion cell
RNFL	Retinal nerve fiber layer
RNFLT	Retinal nerve fiber layer thickness
RPE	Retinal pigment epithelium
SD	Spectral domain
SE	Spherical equivalent
SLO	Scanning laser ophthalmoscope
SLP	Scanning laser polarimetry
TD	Time domain
VCC	Variable corneal compensation
VF	Visual field
μm	Micrometer

LIST OF FIGURES

Figure	Label		
Figure 1	(A) Schematic diagram of the axonal arrangement in humans. (B) Schematic diagram of the horizontal topography of axonal bundles of the retina.		
Figure 2	A. Schematic representation of the RNFL. B. Scheme of RNFL mode 3.4.		
Figure 3	Normal appearance of the optic disc.		
Figure 4	Chorioretinal atrophy in a high myope.		
Figure 5	Illustration of axial length.		
Figure 6	Figure 6 RNFL characteristics in an eye with a myopic optic disc tilt. The ganglion cell complex (GCC) scan pattern.		
Figure 7			
Figure 8	MM7 scan analysis report of one patient with one glaucomatous eye.		
Figure 9	Stereoscopic photograph of (a) normal optic nerve head. (b) Glaucomatous optic nerve head.		
Figure 10	A wedge-shaped defect in the upper arcuate fibers.		
Figure 11	GDX VCC imaging unit		
Figure 12	GDx VCC symmetry analysis printout.		
Figure 13	Low-coherence interferometry system used in OCT.		
Figure 14	Circular scan around the optic disc with time domain OCT.		
Figure 15	OCT RNFL thickness average analysis		

	report.		
Figure 16	Optic nerve head analysis report.		
Figure 17	Schematic of a time domain OCT setup.		
Figure 18	Spectral-domain OCT schematics.		
	A SDOCT image of the normal ONH		
Figure 19	with a 3D reconstruction of the cup and		
	surrounding RPE.		
Figure 20	3-D SD-OCT data visualization		
	Printouts from the commercially		
Figure 21	available spectral domain optical		
	coherence tomography devices.		
Figure 22	Limitations of the 3.4-mm-diameter		
rigure 22	circle scan of the TD-OCT.		
	The OTI Spectral OCT/SLO RNFL		
Figure 23	thickness map over the entire optic nerve		
	region.		
Figure 24	RNFL thickness along a 3.4 mm ring.		
	Example of RNFL Scanning with		
Figure 25	OCT/SLO for a normal eye shows a test		
8	and a repeated test using the test-retest		
F: 06	function.		
Figure 26	The OTI Spectral OCT/SLO.		
Figure 27	Mean age among study groups.		
Figure 28	Sex distribution among study groups.		
Figure 29	Eye studied in each study group.		
Figure 30	Mean spherical equivalent among study		
rigure 30	groups		
Figure 31	Mean AXL among study groups.		
Figure 32	Mean IOP among study groups.		
Figure 33	Mean C/D ratio among study groups.		

Figure 34	Fundus changes in group B.	
Figure 35	Visual field changes in group B	
Figure 36	Mean RNFL thickness in each quadrant in both groups	
Figure 37	OCT of patient number 11	
Figure 38	Scatter plot of the average 360° RNFL thickness against the AXL.	
Figure 39	Scatter plot of the average RNFL thickness against the SE.	
Figure 40	Scatter plot of the temporal RNFLT against the AXL.	
Figure 41	Scatter plot of the superior RNFLT against the AXL.	
Figure 42	Scatter plot of the nasal RNFLT against the AXL	
Figure 43	Scatter plot of the inferior RNFLT against the AXL.	
Figure 44	OCT of left eye of patient number 4 of group A.	
Figure 45	OCT of right eye of patient number 8 of group B.	

LIST OF TABLES

Table	Label		
Table 1	Age distribution among study groups.		
Table 2	Sex distribution among study groups.		
Table 3	Eye examined among study groups.		
Table 4	Spherical equivalent distribution among study groups.		
Table 5	AXL distribution among study groups.		
Table 6	IOP distribution among study groups.		
Table 7	BCVA distribution among study groups.		
Table 8	RNFL thickness distribution among study groups.		
Table 9	Correlation of different parameters with AXL.		
Table 10	Correlation of different parameters with average RNFLT.		
Table 11	Correlation between four quadrants RNFL Measurement and Axial Length.		

	Correlation between RNFL Measurement Equivalent.		-
--	--	--	---

INTRODUCTION

Myopia is the most common ocular abnormality worldwide. Studies have shown the prevalence of myopia in adults to be as high as 26%. (Leung et al, 2006) The ocular morbidity related to myopia presents a major concern from clinical and socioeconomic perspectives. High myopia may be associated with posterior vitreous detachment, myopic macular degeneration, peripheral retinal breaks, degeneration and retinal detachment, and possibly glaucoma. (Seet et al, 2001)

One of the potentially blinding ocular diseases associated with myopia is glaucoma; myopic eyes are at a 2 to 3 times greater risk of developing glaucoma than emmetropic eyes. (**Hoh et al, 2006**)

An important approach to detecting early structural change in glaucoma is based on assessment of the retinal nerve fiber layer (RNFL). Numerous studies have confirmed that RNFL measurement is sensitive for detection of glaucoma, and the extent of RNFL damage correlates with the severity of functional deficit in the visual field. (Leung et al, 2005) (Medeiros et al, 2004)

The histopathological changes that accompany high myopia are well documented and include greater axial length, scleral thinning, chorioretinal atrophy, myopic crescent. The optic discs are frequently abnormal in shape; they are mostly much larger than normal, horizontally oval, or tilted disc, all these may be predisposing factors for localized nerve fiber layer defects. (Özdek et al, 2000) (Schweitzer et al, 2009)

The optical coherence tomographer (OCT) is a modern imaging device which provides reproducible cross sectional images of the human retina in a noncontact and noninvasive manner, with high axial scanning resolution. (**Budenz et al, 2005**)

The OCT is able to measure the RNFL in an objective, quantifiable, and reproducible fashion. These measurements are of great clinical value in the early detection and follow up of glaucoma. (Varma et al, 2003)

Although thinning of the RNFL is indicative of glaucoma, it remains uncertain whether RNFL thickness varies with the refractive status of the eye. To date, there are several reports in the literature concerning the relationship between myopia and RNFL thickness, with various results. (Hoh et al, 2006) (Schweitzer et al, 2009)

It is therefore important to investigate whether any correlation exists between RNFL measurements and axial length/refractive error in myopia, with regard to the observation that the risk of development of glaucoma increases with an increasing degree of myopia. (Mitchell et al., 1999) (Grodum et al., 2001)

Aim of the work

To evaluate the relationship between the peripapillary retinal nerve fiber layer (RNFL) thickness profiles measured using the optical coherence tomography(OCT) and the axial length and refractive error in subjects with myopia.

Patients and Methods

The study will include forty myopic eyes of healthy Egyptian subjects who meet the inclusion criteria. All subjects will be examined in the ophthalmology department-Ain Shams University.

Myopic patients will be further categorized according to their refractive error into two groups:

- *Group I:* Myopic patients with low to moderate myopia (spherical equivalent between -0.50 D and -6.00D), axial length between 24 and 26 mm.
- *Group II:* Myopic patients with high myopia (spherical equivalent more than -6.00 D). axial length more than 26 mm.

Inclusion criteria:

- Healthy subjects with myopia (of spherical equivalent more than -0.50 D)
- Clear optic media.
- Eyes with no concurrent disease.
- Best corrected visual acuity of at least 6/12 (0.5).

Exclusion criteria:

• Subjects with spherical equivalent less than - 0.50 D.