بسم الله الرحمن الرحيم
"قالوا سبحانك لا علم لنا إلا ما علمتنا إنك
أنت العليم الحكيم"
صدق الله العظيم

Absract

Cataract surgery is known to elicit postoperative macular oedema. Although the exact pathomechanism is not known, the role of surgical trauma and release of prostaglandinis suspected. The aim of the study was to measure the mean foveal thickness MFT after uneventful phacoemulsification and posterior chamber intraocular lens (PC IOL) implantation using Optical coherence tomography (OCT).OCT is a fundamentally new type of medical diagnostic imaging modality.

Our study included 50 eyes of 48 patients divided into 2 groups; Group 1 (Diabetes mellitus group) consisted of 25 eyes (25 diabetic patients) and Group 2(Control group) consisted of 25 eyes (23non-diabetic patients). All patients were admitted for Phacoemulsification and PC IOL implantation. MFT was evaluated preoperative and 7,30, and 60 postoperative.

There is no correlation between MFT and age, but there is a highly significant correlation between MFT and staging of diabetic retinopathy, duration of DM.Statistically significant moderate correlation was detected between BCVA and MFT after one and two months postoperative.

Key words:

Optical coherence tomography

Pseudophakic macular oedema

Diabetic macular oedema

Phacoemulsification

Acknowledgement

First of all, I would like to express my deepest gratitude to "Allah" the most Merciful who is praised for all his favors and blessings.

I would like to thank Prof. Dr. *Karim Adly Raafat*, prof. of ophthalmology, Cairo University, for his great help and support. I am truly indebted to him for his unlimited support throughout the whole work. It is a great honor to work under his supervision.

I would like also to express my sincere appreciation and thanks to Prof. Dr. *Mohamed Abdel hamid Mohamed*, Prof. Of ophthalmology, Cairo University, who helped me a lot to finish this work. His valuable advice and constant guide enriched the work.

I would like to thank Lecturer Dr. *Maaly Abdelhalim Mohamed*, Lecturer of ophthalmology, Cairo University, for her kind assistance from the beginning of this study. Her meticulous supervision of the work and her advice had helped me so much.

Also I would like to thank *my mother* and *my husband* who stood by me through all this work, encouraged me and prayed for me. I also thank all my family for their support and prayers.

List of abbreviation

BCVA	Best corrected visual acuity
BRB	Blood-Retina Barrier
BS	Beam splitter
CME	Cystoid macular edema
COX	Cyclooxygenase
DME	Diabetic macular edema
ECCE	Extracapsular cataract extraction
ETDRS	Early treatment diabetic retinopathy study
FA	Fluorescein angiography
FAZ	Foveal avascular zone
IOP	Intraocular pressure
LECs	Lens epithelial cells
LogMAR	Logarithm minimal angle of resolution
ME	Macular edema
MFT	Mean foveal thickness
mm	millimeter
μт	Micrometer
MMFT	Minimal mean foveal thickness
NSAID	Nonsteroidal anti-inflammatory drug
OCT	Optical coherence tomography
PC IOL	Posterior chamber intraocular lens
RNFL	Retinal nerve fiber layer
SNR	Signal/noise ratio
ttt	Treatment
VEGF	Vascular endothelial growth factor

List of abbreviation

PMMA	Polymethyl methacrylate
CC	Choriocapillaris
DC	Dispersion
DG	Diffraction grating
ELM	External limiting membrane
ERM	Epiretinal membrane
GCL	Ganglion cell layer
ICCE	Intracapsular cataract extraction
ILM	Internal limiting membrane
INL	Inner nuclear layer
IPL	Inner plexiform layer
IS/OS	Inner and outer segment
M	Mirror
NFL	Nerve fiber layer
ONL	Outer nuclear layer
OPL	Outer plexiform layer
P	P value
PRP	Pan retinal photocoagulation
r	Correlation coefficient
RLA	Retinal leakage analyzer
RPE	Retinal pigment epithelium
SD-OCT	Spectral domain-OCT
SLD	Superluminescent diode
TD-OCT	Time domain-OCT

List of abbreviation

DM	Diabetes mellitus
DR	diabetic retinopathy
HS	Highly significant
NS	Non-significant
PCO	Posterior capsular opacification
PSC	Posterior subcapsular cataract
S	Significant
SD	Standard deviation
SPSS	Statistical Package of Social Science Software program
3-D	Three-dimension
SS	Signal strength

List of figures

Figure no.	Page no.
Fig. (1) Diagram of a horizontal section of the right eyeball at the level of the optic nerve. The vitreous body has been removed to reveal the extent of the neural retina.	6
Fig. (2) Normal fundus with macula encompassed by major vascular arcades. The macula, or central area, has the following components from center to periphery: umbo, foveola, fovea, parafovea, and perifovea.	7
Fig. (3) Cross section of the fovea.	9
Fig. (4) Diagram showing the arterial supply and venous drainage of the optic disc and optic nerve.	
Fig. (5) Background diabetic retinopathy; (a) clinical features; (b) location of lesions	22
Fig. (6) Consequences of increased vascular permeability in diabetic retinopathy.	23
Fig. (7) Pathogenesis of diabetic retinopathy.	24
Fig. (8) Diabetic retinal capillary bed with many acellular capillaries due to occlusion; remaining capillaries are dilated and show loss of pericytes and an increased number of endothelial cells.	25
Fig. (9) Clinically significant macular oedema.	30
Fig. (10) Low coherence interferometry for high resolution time and distance measurement.	41
Fig. (11) Image generation using OCT.	42
Fig. (12) Spectrometer-based spectral domain optical coherence tomography (SD-OCT) systems. M, fixed mirror; BS, beamsplitter.	44
Fig. (13) SD-OCT, Spectralis: 3D image of retina from a healthy volunteer.	45
Fig. (14) Human retinal images using (A) (SD-OCT) system and (B) (TD-OCT) system.	47
Fig. (15) Early OCT image of the human retina in vivo.	49
Fig. (16) OCT images (A and B) of the macular region. (C) Morphology of the retina.	50

List of figures

Fig. (17) Computer image-processing to quantitatively measure retinal	53
features. Measurement of retinal thickness. (A) Image of the	
macula that has been computer processed to perform boundary	
detection or segmentation in order to measure retinal thickness.	
(B) Quantitative measurement of retinal thickness based on the	
segmented OCT image. (C) Topographic map of retinal	
thickness in the macula.	
Fig. (18) Cystoid macular edema. The retina is significantly thickened,	55
with loss of the normal foveal pit contour. Accumulation of	
intraretinal fluid leads to cystic spaces that are visible as	
rounded, low scattering areas, which typically occur in the INL	
or ONL.	
Fig. (19) DME with serous detachment (Right and left eye of the same	56
patient) using SD-OCT, Cirrus.	
Fig. (20) DME with marked retinal thickening and extensive areas of	58
low intraretinal reflectivity consistent with fluid accumulation	
and macular cysts. Highly reflective intraretinal dots (right side	
of the scan) representing hard lipid retinal exudates.	
Fig. (21) Mean minimal foveal thickness (MMFT) (a) and mean foveal	62
thickness (MFT) (b). In a, the scheme of the six line scans of	
the fast macular thickness protocol, the average of the	
thickness measured at its intersection is defined as MMFT. In	
b, MFT is defined as the mean thickness within the central	
1000-μm diameter area.	
Fig. (22) Retinal map analysis report.	63
Fig. (23) 3-D pyramids showing sex distribution in both groups	68
Fig. (24) Pie chart showing DR staging	68
Fig. (25) Bar chart showing MFT changes in both groups.	71
Fig. (26a, b, c, d): A case from control group.	72. 73
(a): Preoperative OCT, (b): Postop. OCT (one week), (c): Postoperative	
one month. (d): Postoperative two months	
Fig. (27a, b, c, d): A case from diabetic group.	74, 75
(a)Preoperative OCT, (b): postoperative OCT (one week postop.), (c):	
One month postop, (d): Two months postop.	
Fig. (28a, b, c,) A diabetic case of diabetic group	76
(a)Preoperative OCT, (b) Postoperative OCT (one week), (c):	
Postoperative OCT (one month).	

List of figures

Fig. (29) Line chart showing MFT changes in diabetic group.	77
Fig. (30) Line chart showing MFT changes in control group.	78
Fig. (31) Bar chart showing BCVA in both groups.	79
Fig. (32) Line chart showing improvement of BCVA in diabetic group.	80
Fig. (33) Line chart showing improvement of BCVA in control group.	80
Fig. (34) Scatter plot showing the correlation between BCVA and MFT 1 month postoperative in the whole sample.	81
Fig. (35) Scatter plot showing the correlation between BCVA and MFT 2 months postoperative in the whole sample.	81
Fig. (36) Scatter plot showing the correlation between duration of DM and MFT preoperative.	83
Fig. (37) Scatter plot showing the correlation between duration of DM and MFT 1 week postoperative.	84
Fig. (38) Scatter plot showing the correlation between duration of DM and MFT 1 month postoperative.	84
Fig. (39) Scatter plot showing the correlation between duration of DM and MFT 2 month postoperative	85
Fig. (40) Scatter plot showing the correlation between DR stage and MFT preoperative.	86
Fig. (41) Scatter plot showing the correlation between DR stage and MFT 1 week postoperative.	86
Fig. (42) Scatter plot showing the correlation between DR stage and MFT 1 months postoperative.	86
Fig. (43) Scatter plot showing the correlation between DR stage and MFT 2 months postoperative.	87
Fig. (44) Bar chart showing the changes occurred at each time interval regarding MFT in both groups.	88

List of tables

Table (1)	Comparison between diabetics & control	Page 67
	regarding Demographics	
Table (2)	Characteristics of diabetics	Page 69
Table (3)	Comparison between diabetics & control	Page 69
	regarding hypertension	
Table (4)	Change of MFT in each group	Page 71
Table (5)	Comparison between diabetics & control	Page 77
	regarding MFT	
Table (6)	Comparison between diabetics & control	Page 78
	regarding BCVA	
Table (7)	Change of BCVA in each group	Page 79
Table (8)	Correlation between BCVA & MFT	Page 80
Table (9)	Correlation between BCVA & MFT for DM	Page 82
	group only	
Table (10)	Correlation between BCVA & MFT for control	Page 82
	group only	
Table (11)	Correlation between BCVA and MFT with DM	Page 83
	duration	
Table (12)	Correlation between BCVA & MFT with Age	Page 85
	& DR stage	
Table (13)	Changes occurred at each time interval	Page 87
	regarding BCVA in both groups	
Table (14)	Changes occurred at each time interval	Page 88
	regarding MFT in both groups	
I	I .	

Table of contents

- Abstract iiAcknowledgmentiiiList of abbreviationsiv-vi
- List of figuresvii-ix
- List of tables**x**
- Introduction and aim of work

1 Review of literature

Anatomical background

Pathophysiological and epidemiological background 13

OCT and macula

37

- Patients and methods
- **59**

5

Results

67

- Discussion89
- Conclusion98
- Summary99
- References

102

• Arabic summary 128

Evaluation of macular changes after uneventful phacoemulsification surgery in diabetic patients using optical coherence tomography.

Thesis
Submitted in the partial fulfillment of
M.D.degree in Ophthalmology

By

Zeinab Ahmed Saad Torkey M.B., B.Ch, M.sc

Supervised by

Professor Dr. Karim Adly Raafat

Professor of Ophthalmology Faculty of Medicine Cairo University

Dr. Mohamed Abd El Hamid Mohamed

Professor of Ophthalmology Faculty of Medicine Cairo University

Dr. Maaly Abd El Halim Mohamed

Lecturer of Ophthalmology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2013

Rationale and background

Diabetic patients pose a particular challenge due to their early formation of cataracts and propensity to develop macular edema after cataract surgery, (1), (2).

Macular edema (ME) is a major cause of vision loss after cataract surgery in patients with diabetes, (1), (2).

Identifying predisposing risk characteristics to stratify diabetic patients would aid in early detection, treatment and prophylaxis, ⁽³⁾.

Optical coherence tomography (OCT) is a method for high-resolution cross-sectional imaging that directly measures retinal thickness. It uses light to detect relative changes in reflection at optical interfaces and has a theoretical axial resolution of 10 to 14 μ m, ⁽⁴⁾.

OCT has been shown to be highly reproducible in measuring macular thickness in normal individuals and diabetic patients, ^{(5), (6).}

Recent publications by *Browning et al* ⁽⁷⁾ *and Brown et al* ⁽⁸⁾ have suggested that OCT is superior to contact lens biomicroscopy for detecting diabetic macular edema (DME) especially in mild cases.

In diabetics, ME can be cystoid or not, but when associated with clinical macular thickening of specified parameters, it is defined as clinically significant macular edema (CSME), ⁽⁹⁾.

CSME is an important risk factor for decreased vision after cataract surgery. Thus, after cataract surgery, angiographic ME in diabetics may be from pseudophakic cystoid macular edema (CME) or from diabetic ME and by itself may not be clinically useful in predicting visual acuity; however, macular thickening may be clinically important, ⁽⁹⁾.

Pseudophakic macular edema may be predisposed by one or more conditions (other than diabetes) including retinal vascular occlusions, agerelated macular degeneration, uveitis, and cataract surgery, etc, (10).

Pseudophakic DME may be chronic and resistant to treatment, ⁽¹¹⁾ although recent reports by *Cardillo et al* ⁽¹²⁾ *and Larsson et al* ⁽¹³⁾ suggest that delayed treatment of ME after cataract surgery in diabetic patients, though still effective in decreasing center point thickness, is not associated with marked visual improvement; hence the need of early detection of predisposed patients.

Controversy exists regarding the effects of phacoemulsification on retina whether in diabetic or non diabetic patients, with some studies as *Mentes et al* ⁽¹⁴⁾ who reported an incidence of 9.1% ME after uncomplicated phacoemulsification in healthy (non diabetic) subjects, with other suggesting that diabetic patients may be more prone to develop postoperative subclinical retinal swelling or clinical CME, ⁽¹⁰⁾.

Kodama and Coworkers ⁽¹⁵⁾ found a higher incidence of postoperative CME in diabetics than in nondiabetics after extracapsular cataract extraction (ECCE).

El-Ashry et al ⁽¹⁶⁾ reported that lens opacities may affect the image quality of OCT scans used to measure retinal nerve fiber layer (RNFL) thickness as indicated by preoperative Low signal/noise ratio (SNR), so cataract extraction results in an apparent increase of the RNFL thickness.

Some documented that macular edema in non diabetic patients after cataract surgery was associated with the presence of leaking sites involving the vascular areas of the macula, ⁽¹⁷⁾.

ME may be related to impairment of the blood-retinal barrier in diabetics and an increased susceptibility to surgical trauma. Other factors

that may contribute to the progression of diabetic retinopathy and possibly to an increased incidence of CME after phacoemulsification in diabetics may include chronic inflammatory mechanisms, as recently suggested by *Joussen and coworkers* (18).

Also, Kim et al ⁽³⁾ published reports that level of diabetic retinopathy is a risk factor for thickening of the retina after cataract surgery.

Subjects and methods:

Twenty five eyes of diabetic patients and twenty five eyes of non diabetic patients (as a control group) with cataract who are candidates for phacoemulsification and posterior chamber intraocular lens (IOL) implantation are enrolled.

Preoperative evaluation for surgical eyes and non surgical fellow eyes will be performed including best corrected visual acuity (BCVA), biomicroscopy, indirect ophthalmoscopy, intraocular pressure (IOP) measurement, biometry to calculate IOL power, fundus photography, and fluorescein angiography if possible with the opacity of the media and measurement of macular thickness using OCT.

Postoperative examinations are to be performed one week, one month, and two months after surgery. All of the patients will be subjected to ophthalmological examination including BCVA, biomicroscopy, IOP measurement, indirect ophthalmoscopy, fundus photography, fluorescein angiography and measurement of macular thickness using OCT.

Exclusion criteria are subjects who have dense cataract or subjects with prior intraocular surgery of any type, history of uveitis, or the presence of any retinal or choroidal disease, other than diabetes, that could affect retinal thickness.