

ROLE OF MAGNETIC RESONANCE SPECTROSCOPY AND DIFFUSION WEIGHTED IMAGING IN EVALUATION OF OVARIAN TUMORS

Essay

Submitted for Partial Fulfillment of Master Degree in Radiodiagnosis

By

Ayah Allah Ahmed Mohammed Tawfik

M.B., B.Ch.

Ain Shams University

Under The Supervision of

Prof. Dr. Aida El Shibiny Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Dr. Gamal Eldine Mohamed Niazi
Assistant Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2016

First thanks to ALLAH to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Aida El Shibiny, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Gamal Eldine
Mohamed Niazi, Assistant Professor of Radiodiagnosis,
Faculty of Medicine, Ain Shams University, for his
sincere efforts, fruitful encouragement.

I am deeply thankful to my family, for their great help, outstanding support, active participation and guidance.

Ayah Allah Tawik

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vi
Introduction	1
Aim of the Work	4
Anatomy and MRI Appearance of the Ovaries	5
Pathology of the ovarian tumors	20
Pelvic MRI Technique	41
MRI appearance of ovarian tumors and role of DWI MRS in their evaluation	
Role of Other Imaging Modalities in Evaluation of Ovarian Tumors	
Illustrative cases	109
Summary and Conclusion	116
References	
Arabic Summary	

List of Tables

Table No.	Title Page N	<u> </u>
Table (1):	WHO, classification for sex cord tumors	27
Table (2):	TNM staging system for ovarian tumors	39
Table (3):	FIGO staging of ovarian cancer	40
Table (4):	Different MR sequences for evaluating the	
	adnexa	45
Table (5):	Interpretation of DWI findings	54
Table (6):	Metabolites Detected with Proton MR	
	Spectroscopy	57
Table (7):	Criteria for Differentiating Benign from	
	Malignant Ovarian Masses	63
Table (8):	Predominant MR Imaging Characteristic	
	Signal Intensity and Morphology of	
	Adnexal Masses	81
Table (9):	RMI score	104

list of Figures

Fig.	No.	Title Page N	lo.
Fig.	(1):	Embryological origin of the ovaries	5
Fig.		Ovarian fossa	
Fig.		The microstructure of the ovary	
Fig.		Ligaments of the ovary	
Fig.		Broad ligament and ovary on CT	
	(6):	Blood supply to the uterus and ovaries (right)	
Fig.	(7):	Venous drainage of ovary	
Fig.	(8):	Normal zonal anatomy in a premenopausal	
		woman.	17
Fig.	(9):	MRI appearance of corpus luteum cyst	18
Fig.	(10):	MRI appearance of Postmenopausal ovary	19
Fig.	(11):	Classification of ovarian tumors	21
Fig.	(12):	Gross specimen of resected ovarian Serous	22
Fig.	(13):	Gross specimen of resected ovarian mucinous	
		cysta de noma	23
Fig.	(14):	Gross specimen of resected ovarian	
		endometrioid tumor	24
Fig.	(15):	Gross specimen of resected ovarian	
		Transitional cell tumor	
		Gross specimen of ovarian fibroma	
Fig.	(17):	Gross specimen of ovarian thecoma	29
Fig.	(18):	Granulosa cell tumor adult type	30
Fig.	(19):	Gross specimen of sertoli leydig tumor	31
Fig.	(20):	Gross specimen of a large adenexal mass	
		representing a large ovarian teratoma	33

list of Figures cont...

Fig.	No.	Title Page No	<u>o.</u>
Fig.	(21):	Macroscopic specimen of ovarian yolk sac	
		tumor	35
Fig.	(22):	Macroscopic specimen of ovarian choriocarcinoma	36
Fig.	(23):	Technique of Sagittal T2WI	44
Fig.	(24):	Technique of axial T2WI	44
Fig.	(25):	Technique of coronal T2WI	45
Fig.	(26):	Brownian movements in hypocellular (A) and	
		hypercellular (B) environment	47
Fig.	(27):	Graph illustrates the logarithm of relative	
		signal intensity (SI) (y-axis) versus b value	52
Fig.	(28):	Metabolite frequency relative to water	
		frequency	
Fig.	(29):	Serous cystadenoma in a 64-year-old woman	64
Fig.	(30):	Serous papillary carcinoma in a 48-year-old	
		woman	65
Fig.	(31):	Mucinous cystadenocarcinoma in a 57-year-	
		old woman	
_		Clear cell carcinoma in a 42-year-old woman	68
Fig.	(33):	Brenner tumor in a 79-year-old woman. Axial	
		T1-weighted	69
Fig.	(34):	A 32-year-old woman with left-sided	
		Endometrioid carcinoma	70
Fig.	(35):	Ovarian dysgerminoma and mature cystic	_
		teratoma in a 21-year-old woman	
Fig.	(36):	Yolk sac tumor in a 26-year-old woman	72

list of figures cont...

Fig.	No.	Title Page N	<u>Jo.</u>
ri.	/27\-	Mature teratoma in a 33-year-old woman	17 A
		——————————————————————————————————————	/ 4
F1g.	(38):	Mature cystic teratoma with a squamous cell	
		carcinoma component in a 66-year-old woman	76
Fig.	(39):	A 40-year-old female patient with a right	
		ovarian adult granulosa cell tumor	78
Fig.	(40):	A 13-year-old female patient with a right	
		ovarian Sertoli-Leydig cell tumor	79
Fig.	(41):	A 77-year-old female patient with a right	
		ovarian fibroma	80
Fig.	(42):	Decision tree for the T1-weighted high-signal	
		intensity (bright) mass	82
Fig.	(43):	Decision tree for the T2-weighted (T2W) low-	
		signal-intensity mass	84
Fig.	(44):	Decision tree for complex cystic or cystic-solid	
		masses.	85
Fig.	(45):	Schematic for characterizing ovarian masses	
_		based on MRI features	86
Fig.	(46):	Stage IV serous papillary adenocarcinoma of	
		right ovary in a 60-year-old-woman	88
Fig	(47):	Right ovarian teratoma with paucity of fat in a	
6-		77-year-old woman	89
Fig	(48):	Right ovarian fibroma in a 37-year-old woman	
		Residual malignant deposit in the peritoneum of	
r.rg.	\#J/-	a 40-year-old woman	01
TO	/En\-	Residual peritoneal tumor in a 52-year-old	91
LIE-		- Residual nerudueal lumbr lu a 57°Tear'ald	

list of Figures cont...

Fig	, No.	Title Page N	Vo.
Fig	. (51):	Recurrent ovarian cancer in an 80-year-old	
		woman with an increased level of CA-125	95
Fig	. (52):	78-year-old woman with left ovarian	
		mucinous cystadenoma.	98
Fig	. (53):	(a) 59-year-old woman with left ovarian clear cell	
		carcinoma	99
Fig	. (54):	Highgrade serous carcinoma with meta-static	
		spread (solid portion).	101
Fig	. (55):	Proton MRS in a case of fibroma	102
Fig	. (56):	48 year-old woman with primary ovarian	
		malignancy.	106
Fig	. (57):	59 year-old-woman with history of ovarian	
		cancer undergoing imaging for follow-up	107
Fig	. (58):	False-negative FDG PET results in a mucinous	
_		neoplasm	108
Fig	. (59):	68 year old female patient with Right ovarian	
		undifferentiated adenocarcinoma	109
Fig	(60):	Bilateral mature teratomas in 24 year old	
6		female patient	110
Fig	(61):	Post menopausal woman with ovarian	
	. (01)	thecoma	112
Fig	(62):	23 year old female with mucinous cystadenoma	
		Follow up MRI of a Patient with metastatic	225
rig	. (00)-	ovarian carcinoma	114
17 0	(64)	64-year-old woman with bilateral ovarian	114
LIP		ANTERPREDICTION OF THE PROPERTY AND	

List of Abbreviations

Abb.	Full term
ADC	Apparent_diffusion_coefficient.
BHCG	Human chorionic gonadotropin.
BOT	Border line ovarian tumors.
CA125	Cancer antigen 125.
DWI	Diffusion weighted imaging.
FDG	Fludeoxyglucose.
FIGO	International federation of gynecology and obstetrics.
FOV	Field of view
FSE	Fast spin echo
MRS	Magnetic resonance spectroscopy.
MS	Milli seconds
	Multivoxel spectroscopy.
	Ovarian <u>Endometrioid</u> carcinoma
	Ovarian malignant germ cell tumor.
	Proton Emisson Tomgraphy
	Parts per million.
PRESS	Point resolved spectroscopy in the steady state.
	Radiofrequency
	Risk of malignancy index.
ROL	Region of interest.
SNR	Signal to noise ratio.
	Stimulated echo acquisition mode.
STIR	Short inversion time recovery.
	T.one weighted image.
	T.two weighted image.
TE	Time to echo.
TNM	Tumor Node Metastasis.

Introduction

Introduction

varian cancer is the eighth most common cancer and the fifth leading cause of cancer death after bronchial carcinoma, breast, colorectal and pancreatic cancers. Ovarian cancer causes more deaths than any other cancer of female reproductive system; despite accounting for only 3% of all cancers in women. When ovarian cancer is found in its early stages, treatment is most effective (*U.S. Cancer Statistics Working Group*, 2015).

Precise characterization of an adnexal lesion is important as it dictates further management hence, the role of radiology is very important. Until the last decade, exploratory laparotomy was used for the diagnosis and staging of adnexal masses. However, modern imaging techniques have demonstrated similar accuracy in diagnosing and staging of ovarian carcinoma (*Pérez-López et al.*, 2010).

Ultrasound is the first-line imaging investigation for the suspected adnexal masses and helps to characterize the majority. But there is a minority of masses that are "indeterminate." The main reason for indeterminate sonographic diagnosis was the inability to determine the origin of masses, assess large masses and characterize purely solid and complex cystic masses (*Spencer and Ghattamaneni*, 2010).

CT has a limited role in the primary evaluation and characterization of ovarian lesions; however it can be used in

12

evaluating the extent of the disease, in pretreatment planning including cytoreduction and post treatment follow up (*Wasnik et al.*, 2015).

Pelvic magnetic resonance (MR) imaging is the best imaging technique to characterize indeterminate or complex adnexal masses due to its excellent tissue contrast (*Kinkel et al.*, 2005).

The accuracy of MRI to differentiate benign from malignant masses using only the conventional sequences is about 80% according to the published literature (*Bazot et al., 2013*).

Functional imaging is becoming increasingly important in the evaluation of cancer patients because of the limitations of morphologic imaging, particularly in the assessment of response to therapy (*Whittaker et al.*, 2009).

Diffusion weighted imaging (DWI) is a functional technique that provides information about tissue cellularity and integrity of cellular membranes (*Koh and Padhani*, 2006).

Other advantages of DWI include its cost-effectiveness, brevity of execution, complete noninvasiveness', lack of ionizing radiation, no contrast injection and detecting peritoneal dissemination (*Motoshima et al.*, 2011) & small recurrent lesions (*Kyriazi et al.*, 2011).

Molecular imaging through magnetic resonance spectroscopy (MRS) can detect metabolic characteristics of malignancy. As molecular changes often precede morphological alterations, so sensitivity is improved by MRS (*Belki'c and Belki'c*, 2008).

_____ 14 _____

Aim of the Work

