PREVALENCE OF FETAL CONGENITAL HEART ANOMALIES IN FETUSES WITH OTHER STRUCTURAL ANOMALIES

Thesis

Submitted for Complete Fulfillment of The Master Degree (M.Sc.) in Obstetrics and Gynecology

By

Amr Hassan Hussien (M.B.; B.Ch., Cairo University)

Under the Supervision of

Prof. Dr. Omar Mohamed Abdel Aziz

Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University

Dr. Rasha Ahmed M. Kamel

Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University

Dr. Eman Abdel Monem El Kattan

Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Cairo University

> Faculty of Medicine, Cairo University 2009

II

(:

ii

ACKNOWLEDGEMENT

First and foremost, thanks to ALLAH, the most beneficent and most merciful

Words will never be able to express my deepest gratitude to all those who helped me during preparation of this study.

I gratefully acknowledge the sincere advice and guidance of Prof. Dr. Omar Mohamed Abdel Aziz, Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for his constructive guidance, encouragement and valuable help in accomplishing this work.

I am greatly honored to express my deep appreciation to **Dr. Rasha Ahmed M. Kamel,** Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for her continuous support, sincere supervision, direction and meticulous revision of this work.

I am really thankful to **Dr. Eman Abdel Monem El Kattan,** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Cairo University for her great help, advice, precious time, kindness, and moral support.

CONTENTS

	Page
•	Introduction
•	Aim of the Work
•	Review of Literature
	o Human Heart Embryology and Development 7
	o Basic Structure and Position of Human Heart 20
	o Classification of Congenital Heart Anomalies 29
	o Epidemiology of CHD
	o Diagnosis of CHD
	o Associated Anomalies in CHD
•	Patients and Methods
•	Results
•	Discussion
•	Summary
•	References 136
•	Arabic Summary 163

List of Tables

No.	Title	Page
1	Developmental Timeline of Human Heart Embryology	18
2	Chromosomal defects and congenital heart disease (CHD)	58
3	Chromosomal abnormalities associated with CHD	59
4	Studies describing the prevalence of cardiac defects in	59
	trisomy 21	
5	CHD caused by gene mutations (syndromic and non-	61
	syndromic)	
6	Environmental causes of CHD	63
7	Incidence of CHD in live born children	68
8	Common indications for fetal echocardiography	69
9	Yield of CHD by indication for fetal echocardiography	70
10	Frequency of extracardiac and chromosomal anomalies in	85
	single types of congenital heart disease in an Italian	
	multicenter study covering 847 fetuses with prenatally	
	diagnosed congenital heart disease	
11	Extracardiac Malformations and Incidence of Associated	86
	Congenital Heart Disease	
12	Congenital heart defects: number, type, prevalence	113
13	Showing associations between CHD & Other anomalies	116

List of Figures

No.	Title	Page
1	The four major contributors to heart development illustrated	9
2	presomite embryo	9
3	Positioning of the heart	10
4	Different stages of development	10
5	Human heart tube fusion	11
6	Circulation in the fetal heart	15
7	Looping and septation of the human heart tube	16
8	The five embryonic dilatation of the primitive heart tube	17
9	Formation of the AP septum	18
10	Formation of the AV septum	19
11	Formation of the atrial septum	19
12	Formation of the IV septum	19
13	Change in size of fetal heart	21
14	Right atrium and ventricle	24
15	Fetal left heart	26
16	Left ventricle and aortic	27
17	Arrangement of the great arteries	28
18	Types of VSD	34
19	AVSD	35
20	ASD	37
21	ASD	37
22	Coarctation of the aorta	38
23	Hypoplastic left heart	39
24	Hypoplastic left heart	40
25	Ebstein's anomaly	41
26	Pulmonary atresia	42
27	Pulmonary stenosis	42
28	PAPVC	43
29	Anomalies pulmonary venous connection	44
30	TOF	46
31	TOF	47
32	TGA	47
33	TGA	48
34	CTGA	49
35	TGA, CTGA	50
36	TA	51
37	One heart disease several mechanisms	56
38	Checklist to assess on the 4-chamber tube	72

No.	Title	Page
39	Anomalies of the 4-chamber tube	73
40	Left outflow tract anomalies	74
41	DD of malalignment VSD	75
42	Acquisition modalities	77
43	Post-processing modalities	81
44	The five short axis views for fetal heart screening	83
45	CNS anomalies	96
46	Hydrothorax, diaphragmatic hernia	98
47	Abdomen and abdominal wall anomalies	99
48	Down syndrome	101
49	Prevalence of cardiac defects	114
50	Prevalence of isolates and associated CHD	115
51	Association between CHD and CNS anomalies	117
52	Association between CHD and genitourinary	118
53	Association between CHD and skeletal anomalies	119
54	Prevalence of congenital anomalies	121
55	Prevalence of fetal heart anomalies in fetuses with other anomalies	121
56	A case of talipes	122
57	A case of achondroplasia	122
58	A case of VSD + TGA + hypoplastic right heart	122
59	A case of Ebstein anomaly	123
60	A case of Fallot tetralogy	123
61	A case of VSD	123
62	A case of arrhythmia	123
63	A case of polycystic kidney	124
64	A case of hydronephrosis	124
65	A case of Meckel-Gruber syndrome	124
66	A case of hydrops	124
67	A case of cystic hygroma	125
68	A case of spina bifida	125
69	A case of encephalocele	125
70	A case of ventriculomegaly	126

Abstract

Congenital heart diseases (CHD) are the most common fetal malformations with incidence of four to eight cases per I ,000 live births being responsible for 20% of neonatal mortality and 50% of the deaths in infants. Still most diagnoses are performed postnatal.

100 women pregnant in fetuses with confirmed structural congenital anomaly who came to Obstetrics and Gynecology outpatient clinic and referred to Fetal Medicine Unit were included in our study, we detected that CNS anomalies were the most prevalent defects followed by Cardiac, Hydrops, Renal, Skeletal, Chest & GIT anomalies. The risk of extracardiac malformations is 33.3%. The Prevalence of fetal congenital heart anomalies in fetuses with other structural anomalies is 11%.

Keywords:

CHD

Prevalence

Anomalies

Extracardiac

INTRODUCTION

INTRODUCTION

Congenital abnormalities are the main cause of infant death in industrialized countries [Petrini et al., 2002, Lee et al., 2001].

Congenital abnormalities are frequently diagnosed before birth as many of the major fetal abnormalities can be detected by a prenatal ultrasound examination [Levi et al., 2002].

Congenital heart diseases (CHD) are the most common fetal malformations with incidence of four to eight cases per 1,000 live births being responsible for 20% of neonatal mortality and 50% of the deaths in infants [Bahtiyar et al., 2007]. Still most diagnoses are performed postnatal [Game et al., 2001].

The Eurocat study has shown that the overall detection of CHD is 25% with a range of 19-48% in Western European countries [Game et al., 2001]. A more recent population-based study was performed in Australia by Chew et al. [Chew et al., 2007] and showed an overall antenatal detection rate of 53% for CHD in 631 209 patients.

Nowadays echocardiography represents not only the gold standard for prenatal diagnosis of CHI but also the unique standardized imaging modality for the evaluation of cardiac structures [Carvalho et al., 2005].

Thus timing of a first or subsequent fetal echocardiogram needs to be a balance between the feasibility of seeing an abnormality and the accuracy of such a finding. The current consensus is a single preliminary examination at 20 weeks of gestation in the low-risk population (by an obstetric scanner) or preliminary examination at 12 to 14 weeks followed by another examination at 20 weeks in a high-risk population (by a fetal cardiology expert) [Gabriel et al., 2002, Allan et al., 2003, Haak et al., 2003].

Multiple studies have documented the benefits to the newborn of a fetal CHD diagnosis including prompt delivery of medical care and avoidance of severe cyanosis or low cardiac output by maintenance of ductus arteriosus patency [Mahle et al., 2001, Tworetzky et al., 2001].

Congenital heart disease is commonly associated with other extracardiac malformations [Antolin et al., 2001].

Extracardiac anomalies as Omphalocele, Duodenal atresia, Spina bifada, VACTERL are commonly associated with cardiac anomalies [Shipp et al., 1995].

Of 1,763,591 persons born in Denmark in the period 1977 to 2005, 18,207 had CHDs yielding an overall CHD prevalence of 103 per 10,000 live births Additional extracardiac birth defects were found in 4,067 (22.3%) persons with CHD [Nina Oyen et al., 2009].

AIM OF THE WORK

AIM OF THE WORK

The aim of this cross sectional study is to detect the prevalence of fetal congenital heart anomalies in fetuses with other structural anomalies.

REVIEW OF LITERATURE

Chapter 1

INTRODUCTION TO HUMAN HEART EMBRYOLOGY AND DEVELOPMENT

The primary heart field, secondary heart field, cardiac neural crest and proepicardium are the four major embryonic regions involved in the process of vertebrate heart development. They each make an important contribution to overall cardiac development which occurs with complex developmental timing and regulation. The heart is the first organ to fully form and function during vertebrate development and many of the underlying mechanisms are considered molecularly and developmentally conserved [Srivastava and Olson, 2000].

Primary Heart Field and Linear Heart Tube Formation:

The cells that will become the heart are among the first cell lineages formed in the vertebrate embryo [Yutzey et al., 2002].

By day 15 of human development the primitive streak has formed [Sherman et al., 2001] and the first mesodermal cells to migrate (gastrulate) through the primitive streak are cells fated to become the heart [Psychoyos et al., 1996].

These mesodermal cells migrate to an anterior and lateral position where they form bilateral primary heart fields [Ehrman and Yutzey, 1999].

At day 18 of human development the lateral plate mesoderm is split into two layers: somatopleuric and splanchnopleuric [Sherman et al., 2001].

It is the splanchnopleuric mesoderm layer that contains the myocardial and endocardial cardiogenic precursors in the region of the primary heart fields as defined above. Presumptive endocardial cells