

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

Plane Turbulent Submerged Jets in Shallow Tailwater

By Eng. Yahya Mohamed Abdel-wahab Ragab Elmansy

> B.Sc. Civil Engineering Higher Technological Institute Egypt, 2001

A Thesis Submitted in Partial Fulfillment For the Requirements of the Degree of Master of Science in Civil Engineering

Supervised By

Prof. Dr. Soheir M. M. Kamel

Professor of Hydraulics, Irrigation and Hydraulics Dept., Faculty of Engineering Ain Shams University, Cairo, Egypt

Dr. Eng. Yehia K. Abdel-Monim

Assoc.Prof., Irrigation and Hydraulics Dept., Faculty of Engineering Ain Shams University, Cairo, Egypt Dr. Eng. Samir Ali Ead

Assoc.Prof., Irrigation and Hydraulics Dept., Faculty of Engineering Ain Shams University, Cairo, Egypt

Cairo, Egypt 2005

ACKNOWLEDGMENTS

First and foremost I am thankful to Allah the Almighty (God) for his grace and Mercy.

I would like to express my deepest gratitude to my supervisors Prof. Dr. Soheir M. M. Kamel, Professor of Hydraulics, Irrigation and Hydraulics Dept., Faculty of Engineering, Ain Shams University, Dr. Yehia K. Abdel-Monim, Associate Professor, Irrigation and Hydraulics Dept., Faculty of Engineering, Ain Shams University and Dr. Samir Ali Ead, Associate Professor, Irrigation and Hydraulics Dept., Faculty of Engineering, Ain Shams University for their patience, support and continuous encouragement throughout the establishment of this thesis. I ask God to help them and I hope they shall be famous professors not only in Egypt but also All over the world.

Special thanks go to Dr. Samir Ali Ead, he devoted his time and effort to make this study a success and he deal with me not only as a graduate student but also as a brother which is a one of the main principles of Islam.

I wish to extend my thanks to Prof. Dr. Ahmed Ali Hassan, Professor of Environmental Hydrology, Irrigation and Hydraulics Dept., Faculty of Engineering, Ain Shams University and Prof. Dr. Anas Mohamed Elmolla Professor of Irrigation and Hydraulics, Civil Engineering Dept., Faculty of Engineering, Al-Azhar University, my examiners, for their time and effort in reading and revising this thesis thoroughly and making many helpful comments and suggestions.

My great appreciation is to Dr. Ahmed Azmy, Head of Civil Engineering Department, The Higher Technological Institute, 10th of Ramadan City, for his continuous support and kind assistance.

Acknowledgements are greatly extended to my colleagues in Civil Engineering Dept. of The Higher Technological Institute, 10th of Ramadan City, for their help and friendship.

At last but not least, I owe a great appreciation to my mother, my brother Ahmed and my sisters for their prayers, blessing, sacrifices, encouragement and support.

Abstract

This thesis presents a discussion on plane turbulent submerged jets in shallow tailwater to study two main topics. The first topic is a theoretical and laboratory study of the deeply submerged hydraulic jump and a comparison between its characteristics and those of the classical wall jet. The momentum flux, in terms of that at the slot, was discussed theoretically. A theoretical expression for the depression in the water surface elevation at the gate (housing the slot) was also discussed. An extensive set of experiments, with different Froude numbers and tailwater depth ratios, was conducted to observe and quantify the eddy length, the growth of the deeply submerged hydraulic jump, the decay of the velocity scale, the bed shear stress, the drop in the water surface elevation and the momentum flux. The depression in the water surface elevation in the vicinity of the wall produced return flow with negative momentum which resulted in a considerable influence on the momentum flux of the forward flow in the deeply submerged hydraulic jump. The second topic is to present the effect of roughness on the flow characteristics of the deeply submerged hydraulic jump. Two sets of experiments were conducted on rough beds with different roughness. Expressions describing the different flow characteristics of the deeply submerged hydraulic jump, based on the experimental observations, were developed.

Table of Contents

Chapter 1		
Introduction	on	1
1.1	General.	1
1.2	Objectives of the Thesis	1
1.3	Organization of the Thesis	2
Chapter 2		
Literature	Review	3
2.1	Introduction	3
2.2	Classical hydraulic jump	3
2.3	Submerged hydraulic jump	5
2.4	Plane turbulent free jet in Deep tailwater	9
2.5	Classical wall jet	12
2.6	Turbulent Jets in Close Proximity of Boundaries	19
Chapter 3		
Theoretica	l Approach	35
3.1	Neglecting the bed shear stress	36
3.2	Considering the bed shear stress	38
3.3	Dimensional Analysis	42
Chapter 4		
-	ntal Arrangement and Instrumentation Techniques	50
4.1	Introduction	50
4.2	Experimental Arrangement	50
	4.2.1 The Flume	50

	4.2.2	The bed	roughness	51
4.3	Veloci	ity Measu	rements	52
	4.3.1	Prandtl	tube	52
4.4	Bed Sl	hear Stres	s Measurements	52
	4.4.1	Introduc	etion	52
	4.4.2	Preston	tube technique	54
4.5	The Ex	xperiment	S	55
Chapter 5				
Experimen	ntal Res	sults and	Analysis	68
5.1	Eddy l	length		68
5.2	Subme	erged hydi	raulic jump and Wall jet	69
	5.2.1	Velocity	profiles	69
		5.2.1.1	Series A	70
		5.2.1.2	Series B	70
		5.2.1.3	Series C	71
	5.2.2	Similari	ty profiles	72
		5.2.2.1	Series A	72
		5.2.2.2	Series B	73
		5.2.2.3	Series C	74
	5.2.3	Velocity	and length scales	75
		5.2.3.1	Series A	75
		5.2.3.2	Series B	77
		5.2.3.3	Series C	79
	5.2.4	Bed she	ar stress	80
		5.2.4.1	Series A	80
		5.2.4.2	Series B	82
		5.2.4.3	Series C	83

	5.2.5	Momentum flux			84
		5.2.5.1 Series	A		84
		5.2.5.2 Series	В	• • • • • • • • • • • • • • • • • • • •	85
		5.2.5.3 Series	C	• • • • • • • • • • • • • • • • • • • •	86
5.3	Botton	velocity		• • • • • • • • • • • • • • • • • • • •	87
5.4	Variati	ons of the depress	sion ratio at the gate	<u> </u>	88
5.5	Variati	on of the eddy ler	ngth		88
	ŕ		and Suggestions		147
research	• • • • • • • • • • • • • • • • • • • •			•••••	
6.1	Conclu	sions			147
	6.1.1	Smooth bed	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	147
	6.1.2	Effect of roughn	ess		149
6.2	Recom	mendations		•••••	150
6.3	Sugges	tions for future re	esearch		151
Deference	C				153

List of Figures

Figure	<u>Title</u>	Page
2.1	Definition sketch of submerged hydraulic jump	34
2.2	Definition sketch of plane turbulent free jet	34
2.3	Definition sketch of plane turbulent wall jet	34
3.1(a-c)	(a) Definition sketch	44
	(b) Flow pattern	44
	(c) Typical velocity distribution	44
3.2	Variation of θ with η for various Froude numbers F_o ,	
	with and without shear stress	45
3.3	Variation of θ with η for various shear force coefficients	ents ε 46
3.4	Variation of η_f with F_o for various values of ϵ	47
3.5	Variation of η_f with ϵ for various values of F_o	48
3.6	Variation of (M_{∞}/M_o) and $(F_{\delta w}/M_o)$ with (η)	49
4.1	The shape and main dimensions of the Flume	60
5.1	Variation of the eddy length, (L_e/b_o) , with $(\eta-\eta_f)$	89
5.2(a-g)	(a)Typical velocity fields of the submerged jump	
	(Expt. A-1)	90
	(b)Typical velocity fields of the submerged jump	
	(Expt. A-2)	91
	(c)Typical velocity fields of the submerged jump	
	(Expt. A-3)	92
	(d)Typical velocity fields of the submerged jump	
	(Expt. A-4)	93
	(e)Typical velocity fields of the submerged jump	
	(Expt. A-5)	94
	(f)Typical velocity fields of the submerged jump	

	(Expt. A-6)	95
	(g)Typical velocity fields of the submerged jump	
	(Expt. A-7)	96
5.3(a-c)	(a)Typical velocity fields of the submerged jump	
	(Expt. B-1)	97
	(b)Typical velocity fields of the submerged jump	
	(Expt. B-2)	98
	(c)Typical velocity fields of the submerged jump	
	(Expt. B-3)	99
5.4(a-c)	(a)Typical velocity fields of the submerged jump	
	(Expt. C-1)	100
	(b)Typical velocity fields of the submerged jump	
	(Expt. C-2)	101
	(c)Typical velocity fields of the submerged jump	
	(Expt. C-3)	102
5.5(a-n)	(a-b) Velocity distribution (Expt. A-1)	
	(a) Velocity profiles	103
	(b) Similarity profile	103
	(c-d) Velocity distribution (Expt. A-2)	
	(c) Velocity profiles.	104
	(d) Similarity profile	104
	(e-f) Velocity distribution (Expt. A-3)	
	(e) Velocity profiles	105
	(f) Similarity profile	105
	(g-h) Velocity distribution (Expt. A-4)	
	(g) Velocity profiles	106
	(h) Similarity profile	106
	(i-j) Velocity distribution (Expt. A-5)	
	(i) Velocity profiles	107

	(j) Similarity profile	107
	(k-l) Velocity distribution (Expt. A-6)	
	(a) Velocity profiles	108
	(b) Similarity profile	108
	(m-n) Velocity distribution (Expt. A-7)	
	(m) Velocity profiles	109
	(n) Similarity profile	109
5.6	Consolidated non-dimensional graph for the velocity	
	distribution in the submerged jump (Series A)	110
5.7(a-f)	(a-b) Velocity distribution (Expt. B-1)	
	(a) Velocity profiles	111
	(b) Similarity profile	111
	(c-d) Velocity distribution (Expt. B-2)	
	(c) Velocity profiles.	112
	(d) Similarity profile	112
	(e-f) Velocity distribution (Expt. B-3)	
	(e) Velocity profiles	113
	(f) Similarity profile	113
5.8	Consolidated non-dimensional graph for the velocity	
	distribution in the submerged jump (Series B)	114
5.9(a-f)	(a-b) Velocity distribution (Expt. C-1)	
	(a) Velocity profiles	115
	(b) Similarity profile	115
	(c-d) Velocity distribution (Expt. C-2)	
	(c) Velocity profiles.	116
	(d) Similarity profile	116
	(e-f) Velocity distribution (Expt. C-3)	
	(e) Velocity profiles	117
	(f) Similarity profile	117

5.10	Consolidated non-dimensional graph for the velocity
	distribution in the submerged jump (Series C)118
5.11(a-d)	(a) Variation of the maximum velocity ,u _m , with distance
	(Series A)119
	(b) Variation of u_m/U_o with x/b_o (Series A)
	(c) Variation of $(U_o/u_m)^2$ with x/b_o (Series A)
	(d) Effect of the tailwater depth ratio on the breakdown
	distance (Series A)
5.12	Variation of the half- width with distance (Series A)123
5.13(a-c)	(a) Variation of the maximum velocity ,u _m , with distance
	(Series B)124
	(b) Variation of u _m /U _o with x/b _o (Series B)125
	(c) Variation of $(U_o/u_m)^2$ with x/b_o (Series B)
5.14	Variation of the half- width with distance (Series B)127
5.15(a-c)	(a) Variation of the maximum velocity ,u _m , with distance
	(Series C)
	(b) Variation of u _m /U _o with x/b _o (Series C)129
	(c) Variation of $(U_o/u_m)^2$ with x/b_o (Series C)
5.16	Variation of the half- width with distance (Series C)131
5.17(a-g)	(a-b) Variation of the bed shear stress with distance
	(Series A)
	(c-d) Variation of the bed shear stress with distance
	(Series A)
	(e-f-g) Variations of the shear force coefficient
	(Series A)
5.18(a-f)	(a-b) Variation of the bed shear stress with distance
	(Series B)
	(c-d) Variation of the bed shear stress with distance
	(Series B)

	(e-f) Variations of the shear force coefficient
	(Series B)137
5.19(a-f)	(a-b) Variation of the bed shear stress with distance
	(Series C)
	(c-d) Variation of the bed shear stress with distance
	(Series C)
	(e-f) Variations of the shear force coefficient
	(Series C)
5.20	Variation of the momentum flux with distance (Series A)141
5.21	Variation of the momentum flux with distance (Series B)142
5.22	Variation of the momentum flux with distance (Series C)143
5.23	Variations of the bottom velocity144
5.24(a-b)	(a) Variations of θ
	(b) Variations of θ145
5.25	Variation of L _e /b _o with F _o with different roughness
	$(\eta = 20)$

List of Photos

Photo	<u>Title</u>	Page
4.1	The Flume	61
4.2	Rough bed with relative roughness $t/b_o = 0.212$	62
4.3	Relative roughness $t/b_o = 0.379$	63
4.4	Prandtl tube	64
4.5(a-c)	(a) Expt. A-3 ($F_o = 7.2$, $y_t/b_o = 20$)	65
	(b) Expt. A-4 ($F_o = 6.0$, $y_t/b_o = 20$)	66
	(c) Expt. C-3 ($F_0 = 3.8$, $y_t/b_0 = 20$)	67

List of Symbols

Symbol	Description
A	flow pattern, function of the tailwater depth ratio;
В	flow pattern, constant;
b	length scale [L];
b_{o}	slot width [L];
b_{τ}	shear stress length scale [L];
C	flow pattern;
C_1,C_2,C_3	constants;
C_{f}	skin friction coefficient;
C_{fo}	skin friction coefficient = $\tau/(\rho U_o^2/2)$;
d	external diameter of the Preston tube [L];
Δp	dynamic pressure [FL ⁻²];
E	kinetic energy, per unit weight, of the flow at any
	section [L];
E_{o}	the value of E at the slot [L];
F_1	supercritical Froude number in the hydraulic jump;
$F_{\delta w}$	loss in the hydrostatic pressure force at the wall [F];
F_{o}	supercritical Froude number at the slot;
F_{τ}	integrated bed shear stress, per unit width, from the
	slot till the jump surfaces [FL ⁻¹];
$F_{\tau x}$	integrated bed shear stress, per unit width, over a
	distance x from the slot [FL ⁻¹];
g	acceleration due to gravity [LT ⁻²];
H_j	Height of the hydraulic jump = (y_2-y_1) [L];
h	the backup behind the gate in submerged hydraulic
	jump [L];
h_{c1}	lower critical baffle height [L];

h_{c2} upper critical baffle height [L];

h_{min} the minimum flow depth in submerged hydraulic jump

[L];

L the distance where $u_m = 0.5 U_o [L]$;

L_e length of recirculating flow region (eddy length) [L];

L_{ef} the eddy length of the free hydraulic jump [L];

 L_{fj} the length of the free hydraulic jump [L];

L_i the length of submerged hydraulic jump [L];

M momentum flux, per unit width, at a distance x from

the gate [FL⁻¹];

 M_{∞} momentum flux, per unit width, at the section where

the jet occupies the whole depth [FL⁻¹];

M_o momentum flux, per unit width, at the slot [FL⁻¹];

m constant = $\cot (\theta_w/2)$;

p mean pressure at any point [FL⁻²];

Q jet discharge, per unit width, at a distance x measured

from the slot $[L^2T^{-1}]$;

 Q_o value of Q at the slot $[L^2T^{-1}]$;

q discharge per unit width $[L^2T^{-1}]$;

R hydraulic radius [L];

R_n Reynolds number;

S submergence factor;

s channel slope;

t thickness of roughness [L];

 U_1, U_2 mean velocities at depths of y_1 and y_2 [LT⁻¹];

U_o velocity issuing from the slot [LT⁻¹];

 $-\rho \overline{uv}(y)$ Reynolds stress [FL⁻²];

u time-averaged velocity at any point [LT⁻¹];