

وَقُلْ رَبِّ زِدْنِي عِلْماً

﴿سورة طه الآية ١١٤﴾

ريالي الحظيم

## **Update of Accommodative Intra Ocular Lenses**

#### **Essay**

Submitted for Complete Fulfilment of Master Degree (M.Sc.) in Ophthalmology

By

## **Osama Youssef Amin Hassan**

M.B., B.ch. Faculty of Medicine

## Supervised By

## Dr. Yehia Mahmoud Salaheldin Mostafa

Professor of Ophthalmology,
Faculty of Medicine, Cairo University

## Dr. Rania Mohamed Sobhi

Ass. Professor of Ophthalmology, Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2009

# Acknowledgement

First and foremost, my deep thanks to **ALLAH**, The most kind and the most merciful for giving me patience and strength to achieve this work.

I would like to express my real, deepest and great gratitude, respect & appreciation to my Dr. YEHIA MAHMOUD SALAHELDIEN MOSTAFA, Professor of Ophthalmology, Faculty of Medicine, Cairo University, for his continuous support, instructive education, scientific addition, guidance, encouragement and supervision.

Words fail to express my profound thanks and sincere gratitude to **Dr. RANIA MOHAMED SOBHI** Assistant professor of Ophthalmology, Faculty of Medicine, Cairo University, who devoted a lot of her time and efforts to help me, and for her valuable advice, appreciable encouragement, constant guidance, and helpful criticism throughout the whole work. Without her skills, this work would have never seen light.

Thanks to all members of my family; father, mother, brothers and sisters, for all good thing in my life.

Finally, I would like to thank my dear wife and sweet heart; my kids Nouran and Omer, who always provide me with love and support.

OSAMA YOUSEF AMIN 2009

## **Table of Contents**

| Title                                                  | Page |
|--------------------------------------------------------|------|
| List of figure                                         | I    |
| <ul> <li>List of table</li> </ul>                      | IV   |
| <ul> <li>List of abbreviation</li> </ul>               | V    |
| Introduction                                           | 1    |
| Aim of the work                                        | 6    |
| Review of literature                                   |      |
| <ul> <li>Anatomy of accommodative apparatus</li> </ul> | 7    |
| The ciliary apparatus                                  | 7    |
| The zonular fibers                                     | 9    |
| The lens and capsule                                   | 11   |
| <ul><li>Physiology of accommodation</li></ul>          | 15   |
| Definitions of presbyopia and accommodation            | 15   |
| Factors affecting accommodation                        | 15   |
| Pseudophakic accommodation                             | 16   |
| Nomenclature (true & pseudophakic                      | 16   |
| accommodation)                                         |      |
| Physiology of Accommodation and Path physiology        | 18   |
| of Presbyopia                                          |      |
| Theories of accommodation                              | 19   |
| <ul> <li>Helmholtz's theory</li> </ul>                 | 19   |
| <ul><li>Fincham's theory</li></ul>                     | 22   |
| <ul> <li>Schachar's theory</li> </ul>                  | 23   |
| <ul> <li>Coleman's theory</li> </ul>                   | 26   |
| Theories of presbyopia                                 | 26   |
| <ul> <li>Types of accommodative IOLs</li> </ul>        | 28   |
| Single optic                                           |      |
| <ul> <li>BioComFold (Morcher GmbH)</li> </ul>          | 29   |
| <ul> <li>Human optic (Akkommodative 1CU)</li> </ul>    | 31   |
| <ul> <li>CrystaLens (Eyeonics)</li> </ul>              | 38   |
| <ul><li>TetraFlex (Lenstec)</li></ul>                  | 51   |
| ` '                                                    |      |

| Dual optics                                       |    |
|---------------------------------------------------|----|
| • Synchrony (Visiogen)                            | 58 |
| • SarFarazi                                       | 64 |
| Deformable optic lenses                           |    |
| • The Medennium Smart IOL                         | 68 |
| • FlexOptic (Quest Vision) (AMO)                  | 75 |
| • LiquiLens (Vision Solutions Technologies)       | 77 |
| <ul> <li>FluidVision IOL (PowerVision)</li> </ul> | 79 |
| • NuLens (NuLens Ltd., Israel)                    | 82 |
| Lens refilling                                    |    |
| Akkolens                                          |    |
| Pixelated optic IOL                               |    |
| Summary & conclusion                              |    |
| References                                        |    |
| Arabic summary                                    |    |

# <u>List of Figures</u>

| Figure      | Title                                                       | Page |
|-------------|-------------------------------------------------------------|------|
| Figure 1:   | Anatomy of the ciliary body and ciliary muscle.             | 13   |
| Figure 2:   | The ciliary muscle groups and the suspensory                | 14   |
|             | ligaments.                                                  |      |
| Figure 3:   | The suspensory (zonules) ligaments & the ciliary body       | 14   |
|             | processes.                                                  |      |
| Figure 4:   | Helmholtz's theory of accommodation.                        | 20   |
| Figure 5:   | Helmholtz's theory of accommodation.                        | 20   |
| Figure 6:   | Schachar's theory of accommodation.                         | 24   |
| Figure 7:   | Schachar's theory of accommodation.                         | 24   |
| Figure 8 A: | Reflection of a face in the centre of the air filled Mayler | 24   |
|             | balloon.                                                    |      |
| B:          | Reflection of a face in the periphery of the air filled     |      |
|             | Mayler balloon.                                             |      |
| Figure 9:   | Schematic drawing showing the BioComFold model              | 30   |
|             | 43E (Morcher).                                              |      |
| Figure 10:  | The two semi-circlular ring haptics of the BioComFold.      | 30   |
| Figure 11:  | Schematic drawing of the 1 CU accommodative IOL.            | 32   |
| Figure 12:  | Localization of the 1 CU accommodative IOL in the           | 33   |
|             | capsular bag.                                               |      |
| Figure 13:  | Transillumination photograph of 1 CU localized in the       | 37   |
|             | capsular bag 1 year after implantation.                     |      |
| Figure 14:  | The CrystaLens accommodating IOL.                           | 40   |
| Figure 15:  | Positions of CrystaLens at near and distance.               | 41   |
| Figure 16:  | Capsulatomy larger than optic and hings in CrystaLens       | 44   |
|             | AT 50.                                                      |      |
| Figure 17:  | Model AT-45 and (b) model AT-50.                            | 47   |
| Figure 18:  | The Kellan TetraFlex KH-3500 IOL's haptics are              | 51   |
|             | designed to capitalize on the movement of the ciliary       |      |
|             | muscles.                                                    |      |
| Figure 19:  | The TetraFlex IOL is based on an entirely different         | 52   |
|             | concept than other accommodative lenses.                    |      |
| Figure 20:A | UBM photograph of the TetraFlex IOL in the                  | 53   |
|             | unaccommodated (distance) position.                         |      |
| :В          | UBM photograph of the TetraFlex IOL in the                  |      |
|             | accommodated (near) position.                               |      |

| Figure 21:   | Three-dimensional ray tracing portrays the refractive power across the pupil in an eye with the TetraFlex | 54 |
|--------------|-----------------------------------------------------------------------------------------------------------|----|
|              | IOL.                                                                                                      |    |
| Figure 22 A: | The TetraFlex lens in situ shows good centeration and                                                     | 57 |
|              | orientation.                                                                                              |    |
| B:           | The slit-lamp photograph shows the TetraFlex IOL in                                                       |    |
|              | an eye.                                                                                                   |    |
| Figure 23 A: | 5.5-mm high plus anterior optic is coupled with a 6.0-                                                    | 63 |
|              | mm minus posterior optic of Visiogen                                                                      |    |
| B:           | Gross photographs of the synchrony IOL (Visiogen).                                                        |    |
| C:           | Synchrony Accommodative IOL (Visiogen, Irvine).                                                           |    |
| D:           | Synchrony AIOL preloaded to injector system.                                                              |    |
| Figure 24:   | Telescopic design of Visiogen                                                                             | 63 |
| Figure 25:   | Lens assembly of Sarfarazi                                                                                | 65 |
| Figure 26:   | Lens configurations of Sarfarazi                                                                          | 66 |
| Figure 27:   | Insertion in the bag of Sarfarazi                                                                         | 66 |
| Figure 28:   | SmartIOL                                                                                                  | 69 |
| Figure 29:   | SmartIOL is 9.5 by 3.5 mm                                                                                 | 70 |
| Figure 30:   | The Smart IOL at different stages.                                                                        | 70 |
| Figure 31:   | Smart lens at different stages.                                                                           | 71 |
| Figure 32:   | The FlexOptic IOL has a mechanism of anterior                                                             | 76 |
|              | movement by axial travel of the optic, in addition to                                                     |    |
|              | optic shape change.                                                                                       |    |
| Figure 33:   | The LiquiLens when positioned for distance vision. The                                                    | 78 |
|              | LiquiLens when positioned for near vision                                                                 |    |
| Figure 34:   | PowerVision.                                                                                              | 79 |
| Figure 35:   | Schematic showing the mechanism of action for the                                                         | 80 |
|              | Power Vision IOL.                                                                                         |    |
| Figure 36:   | PowerVision and its internal structures.                                                                  | 81 |
| Figure 37:   | Constructed prototypes & schematic of NuLens                                                              | 85 |
| Figure 38:   | Mechanical model of the NuLens concept.                                                                   | 85 |
| Figure 39:   | Prototype of NuLens accommodating IOL with                                                                | 87 |
|              | posterior aperture. Arrow is pointed to the hole for the                                                  |    |
|              | flexible lens.                                                                                            |    |
| Figure 40:   | Schematic description of the second-generation of                                                         | 90 |
|              | NuLens accommodating IOL                                                                                  |    |
| Figure 41:   | The NuLens real accommodating IOL.                                                                        | 90 |

| Figure 42:   | Foldable Silicone anterior accommodating IOL.               | 99  |
|--------------|-------------------------------------------------------------|-----|
| Figure 43:   | Schematic of the lens-refilling procedure.                  | 100 |
| Figure 44:   | Posterior accommodating IOL.                                | 101 |
| Figure 45:   | A PCCC is created to prevent PCO. A posterior accommo-      | 101 |
|              | dating IOL is inversely implanted to seal the PCCC.         |     |
|              | Silicone polymers are injected between the 2 IOLs (AC       |     |
|              | IOL = accommodating intraocular lens; CCC = continuous      |     |
|              | curvilinear capsulorrhexis).                                |     |
| Figure 46:   | The principle of preventing leakage of injectable silicone. | 102 |
|              | The injected silicone polymer presses the IOL from the      |     |
|              | inside of the capsular bag against the CCC and anterior     |     |
|              | capsule (arrows). The injected silicone polymer did not     |     |
|              | leak through the space between the anterior capsule and     |     |
|              | IOL unless the IOL was pushed very far posteriorly (AC      |     |
|              | IOL = accommodating intraocular lens; CCC = continuous      |     |
|              | curvilinear capsulorrhexis).                                |     |
| Figure 47:   | The AkkoLens                                                | 105 |
| Figure 48 A: | Comparison of Current and AkkoLens Accommodating            | 106 |
|              | Intraocular Lenses Current accommodating intraocular        |     |
|              | lenses (AIOLs)                                              |     |
| B:           | Schematic of mechanism of AkkLens.                          |     |
| Figure 49:   | Schematic of Pixelated optics embedded in a parent          | 107 |
|              | IOL.                                                        |     |

# **List of Table**

| Table    | Title                                                                       | Page |
|----------|-----------------------------------------------------------------------------|------|
| Table 1: | Published in vivo animal lens refilling experiments in chronological order. | 97   |

#### **LIST OF ABBREVIATION**

- AAIOL = Anterior Accommodating Intra Ocular Lens
- AIOL = Accommodating Intra Ocular Lens
- AC IOL = Accommodating Intra Ocular Lens
- ACCC= Anterior Continuous Curvilinear Capsulorrhexis
- ACO = Anterior Capsular Opacification
- AIOLs = Accommodating Intraocular Lenses
- AMO = Advanced Medical Optics
- BCVA = Best Corrected Visual Acuity
- BSCVA = Best Spectacle Corrected Visual Acuity
- CCC = Continuous Curvilinear Capsulorrhexis
- CLE = Clear Lens Extraction
- D = Diopter
- DCNVA = Distant Corrected Near Visual Acuity
- EAIOL = Elliptical Accommodating IOL
- EDTA= Ethylene Diamine Tetraacetic Acid
- FDA = Food and Drug administration
- Fig = Figure
- IOL = Intra Ocular Lens
- LECs = Lens Epithelial Cells
- MRI = Magnetic Resonance Imaging
- NDRA = Near Distance Refractive Addition
- Nd:YAG = Neodymium Yettrium-Garnate
- OVD = Ophthalmic Viscosurgical Device
- PCCC = posterior Continuous Curvilinear Capsulorrhexis
- PCIOL = Posterior Chamber Intra Ocular Lenses
- PCO = Posterior Capsular Opacification

- PMMA = Poly Methyle Meth Acrylate
- RA-IOLs = Real Accommodative Intra Ocular Lenses
- RLE = Refractive Lens Exchange
- UBM = Ultrasonic Biomicroscopy
- UV = Ultra Violet

## **Aim Of The Work**

The aim of this work is to identify the accommodative IOL present currently as regards the types, the materials used & the designs; the advantages, the disadvantages & complications of each type.

#### **INTRODUCTION**

Although nowadays cataract can be treated with fairly satisfactory results, the patients lose the ability to accommodate in the classical way, (**Pusch J, 2004**) because the traditional pseudophakic intraocular lenses (IOLs) have provided excellent levels of uncorrected distance acuity, but have proved ineffective for near acuity. (**Dell S.J, 2005**)

The demands of modern society to improve the quality of life of people suffering from presbyopia make IOLs attractive compared to external aids. The long-term aim is the development of material for intraocular lenses, which not only allows the patients to recover their vision, but also enables them to accommodate without auxiliary aids. (Pusch J, 2004)

So, one of the most challenging tasks of modern cataract surgery is restoration of the accommodative ability in pseudophakic patients. Various attempts to solve the problem of loss of accommodation after cataract surgery have been made to enable satisfying distance and near vision without spectacles. (Oliver Findl and Christina Leydolt, 2007) Technological advances now provide us with the opportunity to afford our patients vision more similar to the pre-cataract state. (Stachs O et al, 2005)

The issue of restoring accommodation through refractive lens exchange (RLE) as for clear lens extraction (CLE) or following cataract surgery is becoming an increasingly important topic in ophthalmology, one that bears revisiting on a regular basis. Several different approaches can be taken using an IOL, one example is Multifocal IOLs that use different designs to provide distance and near vision following removal of the crystalline lens have been developed. (Mamalis N, 2004)

Multifocal intraocular lenses (IOL) that provide improved uncorrected near vision, but at the expense of reduced contrast sensitivity and disturbing optical phenomena. (Leyland M. and Pringle E, 2006) Also with using multifocal lenses a certain percentage of patients will report unwanted mesopic or scotopic symptoms, (Doane JF. and Randolph T. Jackson, 2007) such as decreased contrast sensitivity and glare and halos, (Mamalis N, 2004) and are subsequently dissatisfied with their operative endpoint. (Doane JF. and Randolph T. Jackson, 2007)

So problems associated with multifocal IOLs have stimulated research into the development of an accommodating IOL. Accommodating IOLs have the potential to provide near and distance vision without diminution of night time images and decreased contrast sensitivity. (Mamalis N, 2004)

At hence another alternative for the correction of presbyopia, a new generation of IOLs, so-called accommodating IOLs, have been developed. Provided the ciliary muscle maintains its potential for contraction with increasing age, the mechanism of these IOLs is based on the Helmholtz theory of accommodation, which hypothesizes force transmission from the ciliary muscle to the lens via the zonular apparatus, or Coleman's hydraulic suspension theory, which assumes that changes in vitreous pressure are responsible for lens shape changes. Currently available accommodating IOLs are designed to transform the forces of the ciliary muscle into a forward shift of the IOL optic, also referred to as the optic-shift concept. (Oliver Findl and Christina Leydolt, 2007)

A forward shift of a single IOL optic induces an increase in overall refractive power of the eye; a shift of approximately 0.60 mm would cause 1.0 diopter (D) of accommodation in the spectacle plane for an eye

of normal dimensions. To attain accommodative amplitude of 3.0 D to enable reading at the customary distance of 33 cm (13 inch), an IOL movement of 1.8 mm is needed. (Oliver Findl (A), 2005)

As a result of several factors such as small pupil size, myopic astigmatism, corneal aberrations, corneal multifocality and good visual perception, pseudophakic patients may have an adequate depth of field to reach satisfying far and near visual acuity without any correction. This clinical phenomenon is referred to as apparent accommodation or pseudoaccommodation. It is also found in aphakic patients, proving that this phenomenon does not rely on the presence of an IOL. (Oliver Findl (B), 2005).

The amplitude of apparent accommodation is in the order of 1.0 to 2.0 D depending on which method of assessment is used. Therefore, if an accommodative IOL would cause at least 1.0 D of true pseudophakic accommodation by moving at least 0.6 mm, then most patients should be able to read without near spectacle addition. (Oliver Findl (A), 2005)

#### **Common Types of Accommodative IOLs**

The accommodative IOLs have different designs and materials, and have demonstrated accommodative ability, but the degree of accommodative amplitude has been reported to different extents and variabilities. (Dick HB, 2005)

Ring-Haptic IOL is the first accommodative IOL that was available on the market was the Ring-Haptic IOL designed by H. Payer and produced by Morcher GmbH in Stuttgart, Germany. Two designs were marketed in the 1990s, under the names BioComFold 43A and 43E, the latter with a few minor modifications in design. 1CU IOL is the second accommodative IOL that became available in 2001 is based on a concept