

Ain Shams University
Faculty of Engineering
Structural Engineering Department

CFRP STRENGTHENING OF PRESTRESSED HOLLOW CORE SLABS IN POSITIVE MOMENT REGION

By

Fareed Mahmoud Mahmoud Elgabbas

B.Sc. 2005, Structural Division Civil Engineering Department Ain Shams University

Thesis
Submitted in partial fulfillment of the requirements of the degree of
MASTER OF SCIENCE

in

Civil Engineering (Structural)

Supervised by

Prof. Dr. Amr Salah El-Dieb

Professor of Properties and Testing of Materials, Structural Department, Ain Shams University

Prof. Dr. Amr Ali Abdelrahman

Professor of Concrete Structures, Structural Department, Ain Shams University

Dr. Abdel Wahab Ahmed El-Ghandour

Associate Professor of Concrete Structure, Structural Department, Ain Shams University

Cairo - 2009

Ain Shams University Faculty of Engineering Structural Engineering Department

CFRP STRENGTHENING OF PRESTRESSED HOLLOW CORE SLABS IN POSITIVE MOMENT REGION

By Fareed Mahmoud Mahmoud Elgabbas

B.Sc. 2005, Structural Division Civil Engineering Department Ain Shams University

Thesis
Submitted in partial fulfillment of the requirements of the degree of
MASTER OF SCIENCE

in

Civil Engineering (Structural)

Referees Committee:

Prof. Dr. Ashraf Hassan El-Zanaty	
Professor of Concrete Structures,	
Structural Engineering Department,	
Cairo University	
Prof. Dr. El-Sayed Abd El-Raouf Nasr	
Professor of Properties and Testing of Materials,	
Structural Engineering Department,	
Ain Shams University	
Prof. Dr. Amr Ali Abdelrahman	••••
Professor of Concrete Structures,	
Structural Engineering Department,	
Ain Shams University	
Dr. Abdel Wahab Ahmed El-Ghandour	••••
Associate Professor of Concrete Structure,	
Structural Engineering Department,	
Ain Shams University	

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in partial

fulfillment of the requirements for the degree of Master of Science in Civil

Engineering (Structural).

The work included in this thesis was carried out by the author at

reinforced concrete lab of the faculty of engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at

any other university or institute.

Date : / / 2009

Name : Fareed Mahmoud Mahmoud Elgabbas

Signature : Fareed Elgabbas

ACKNOWLEDGMENTS

First of all, I thank **GOD** who guided and helped me to finish this work in the proper shape.

I would like to express my deepest appreciation to **Prof. Dr. Amr Salah El-Dieb**, Professor of Properties and Testing of Materials, Faculty of Engineering, Ain Shams University, for his guidance and valuable suggestions.

I would like express extremely grateful to **Prof. Dr. Amr Ali Abdelrahman**, Professor of Concrete Structures, Faculty of Engineering, Ain Shams University, for his experienced advice, continuous and deep encouragement through all phases of the work.

I also would like to thank **Dr. Abdel Wahab Ahmed El-Ghandour**, Associate Professor of Concrete Structure, Faculty of Engineering, Ain Shams University, for his highly appreciated effort and support in completing this work.

Profound gratitude and sincere appreciation are also forwarded to **Prof. Dr. El-Sayed Abd El-Raouf Nasr** who has provided me with valuable advice during my research.

Special thanks go to the Arab Contractors Company (Osman Ahmed Osman) for their support to the research by supplying the research with tested specimens of precast prestessed hollow core concrete slabs.

Finally, I would like to thank my family for their continuous encouragement, overwhelming support, fruitful care and patience, especially during the hard times.

ABSTRACT

This thesis presents an experimental and analytical investigation on the structural behavior of precast prestressed hollow core RC slabs strengthened in flexure by positive bending CFRP laminates. The strengthening technique; i.e., either externally bonded or near surface mounted (NSM) laminates, the area and mechanical anchorage of CFRP laminates were the main test parameters.

The key test results demonstrated that the NSM technique resulted in optimum strengthening efficiency, including capacity enhancement up to 80% at comparable failure deformations to the control slab. The increased bond strength also resulted in full activation of the NSM laminates at failure. Nonetheless, the NSM flexural strengthening level should be carefully designed to avoid unfavorable shear-tension failure.

On the other hand, moderate efficiency was associated with the externally bonded technique due to the premature de-bonding. However, the latter efficiency was optimized (up to 70% capacity enhancement) by the provision of transverse CFRP anchorage at the laminates' ends and two-thirds of the slabs' spans, which redirected de-bonding further away from the laminates' ends and delayed failure, but at much lower deformations than those of the control slab. Nonetheless, highest post-cracking stiffness was associated to the externally bonded technique. Accordingly, while the NSM technique appears to be favorable in strength and seismic oriented

applications, the externally bonded technique appears attractive in serviceability oriented ones.

Finally, a rational analytical study was conducted, where the strain compatibility approach, the ACI 440.2R-08 and the CPCI design manual were used for flexural capacity, CFRP de-bonding and shear capacity predictions, respectively. The analytical deflections were also calculated using the integration of curvature along the span, and incorporating the CFRP tensile and bond characteristics. Comparisons between the experimental and analytical results demonstrated satisfactory agreements.

Keywords: Precast prestressed hollow core RC slabs; Flexural strengthening; CFRP laminates; Near surface mounted (NSM); Externally bonded; Transverse anchorage; Strengthening efficiency; Intermediate crack de-bonding (ICD); Rational analytical model.

TABLE OF CONTENTS

ABSTR	ACT	i
TABLE	OF CONTENTS	iii
LIST OF	F FIGURES	vii
LIST OF	F TABLES	xii
LIST OF	F EQUATIONS	xiii
NOTAT	TON	xiv
CHAPT	ER (1): INTRODUCTION	1
1.1 G	eneral	2
1.2 O	bjectives	4
1.3 Sc	cope and Contents	4
1.4 Tl	hesis Outline	5
CHAPT	ER (2): LITERATURE REVIEW	7
2.1 In	troduction	8
2.2 R	eview of Precast Prestressed Hollow Core Slabs	8
2.2.1 A	dvantages of Precast Prestressed Hollow Core Slabs	10
2.2.1.1	Applications	10
2.2.1.2	Fast Track Constructions	11
2.2.1.3	Self Weight	11
2.2.1.4	Quality and Durability	11
2.2.1.5	Spans and Loads	12
2.2.1.6	Support Requirements	12

2.2.1.	7 Fire Resistance	12
2.2.1.	8 Surface Condition	13
2.2.2	Disadvantages of Precast Prestressed Hollow Core Slabs	14
2.3	Review of Advanced Composite Materials (ACM)	14
2.3.1	Polymer Matrix	15
2.3.1.	1 Polyester Resins	16
2.3.1.	2 Epoxy Resins	17
2.3.2	Reinforcing Fibers	18
2.3.3	Fillers and Additives	21
2.3.4	Advantages and Disadvantages of FRP	21
2.3.4.	1 Advantages of FRP	21
2.3.4.	2 Disadvantages of FRP	22
2.3.5	Applications of ACM	22
2.3.6	FRP Products	23
2.4	Review of Flexural Strengthening Using FRP for Simply	
	Supported Elements	28
2.5	Advantages and Disadvantages of NSM Technique	37
2.5.1	Advantages of NSM Technique	37
2.5.2	Disadvantages of NSM Technique	38
2.6	Motivations of Research	39
CHA	PTER (3): EXPERIMENTAL PROGRAM	40
3.1	General	41
3.2	Specimens' Details and Strengthening Schemes	41
3 3	Test Parameters	43

3.4	Strengthening Schemes	43
3.5	Strengthening Application	47
3.5.1	NSM Technique	47
3.5.2	Externally Bonded Technique	51
3.6	Material Properties	54
3.7	Instrumentation	56
3.8	Test Setup and Loading Procedure	57
CHAI	PTER (4): EXPERIMENTAL RESULTS AND DISCUSSIONS	60
	Introduction	61
	Experimental Results of Individual Specimens	61
4.2.1	Behavior of Slab (S)	61
4.2.2	Behavior of Slab (S-NSM-2C25)	64
4.2.3	Behavior of Slab (S-NSM-2C16)	69
4.2.4	Behavior of Slab (S-NSM-2C50)	72
4.2.5	Behavior of Slab (S-EB-2C50)	77
4.2.6	Behavior of Slab (S-EBA-2C50)	83
4.3	Comparative Discussion of Experimental Results	91
4.3.1	Test Observation	91
4.3.2	Deflections	99
4.3.3	Tensile Strains at the CFRP Laminates' Mid-spans	102
4.3.3.	1 Tensile Strains at Position of S ₃	103
4.3.3.	2 Tensile Strains at Position of S ₄	105
4.3.4	Tensile Strains Near the CFRP Laminates' Ends (S_1 and S_6)	106
4.3.5	Longitudinal Tensile Strains' Profiles in the CFRP Laminates	109
4.3.6	Compressive Concrete Strains	113

CHA	PTER (5): ANALYTICAL STUDY	115
5.1	Introduction	116
5.2	Material Modeling	117
5.2.1	Concrete	117
5.2.2	Steel	120
5.2.3	CFRP Laminates	120
5.3	Cracking Moment Prediction	120
5.4	Capacity Prediction Models	121
5.4.1	Flexural Capacity Prediction	121
5.4.2	Shear Capacity Prediction	125
5.4.3	CFRP De-bonding Capacity Prediction	127
5.4.4	Failure Criteria	128
5.5	Deflection Prediction	129
5.6	Comparison between Predicted and Experimental Results	132
5.6.1	Capacity and Modes of Failure	132
5.6.2	Deflection	135
СНА	PTER (6): CONCLUSIONS AND RECOMMENDATIONS	
	FOR FUTURE RESEARCH	139
6.1	Summary	140
6.2	Conclusions	140
6.3	Recommendations for Future Research	145
REFI	ERANCES	147
Δ DDI	ENDICES	154

LIST OF FIGURES

Figure 2.1. Manufacturing of precast prestressed hollow core slabs	9
Figure 2.2. Steam curing of precast prestressed hollow core slabs	9
Figure 2.3. Products of precast prestressed hollow core concrete slabs	13
Figure 2.4. Stress-strain curve of FRP components	14
Figure 2.5. Stress-strain c urve of various FRP (ACI 440)	19
Figure 2.6. Woven fabrics	24
Figure 2.7. Stitch-bonded fabrics	24
Figure 2.8. Roving fabrics	25
Figure 2.9. FRP Products	28
Figure 3.1. Concrete dimensions and internal steel reinforcement of	
the tested slabs	42
Figure 3.2 Strengthening schemes of the tested slab (S-NSM-2C25)	44
Figure 3.3 Strengthening schemes of the tested slab (S-NSM-2C16)	45
Figure 3.4 Strengthening schemes of the tested slab (S-NSM-2C50)	45
Figure 3.5 Strengthening schemes of the tested slab (S-EB-2C50)	46
Figure 3.6 Strengthening schemes of the tested slab (S-EBA-2C50)	46
Figure 3.7. Application of the NSM CFRP laminates	51
Figure 3.8. Application of the externally bonded CFRP laminates	53
Figure 3.9. Pouring and self compaction techniques of precast	
prestressed hollow core slabs	54
Figure 3.10. Curing stage of precast prestressed hollow core slabs.	54
Figure 3.11. Positioning of deflection and strain measurements	57
Figure 3.12. Test setup	59

Figure 4.1. Crack pattern and mode of failure of slab S	62
Figure 4.2. Load – Mid-span deflection response of slab S	63
Figure 4.3. Load – Compressive concrete strain response of slab S	64
Figure 4.4. Crack pattern and mode of failure of slab S-NSM-2C25	65
Figure 4.5. Load – Mid-span deflection response of slab	
S-NSM-2C25	66
Figure 4.6. Load – Mid-span CFRP tensile strain curves (S_3 and S_4)	
of slab S-NSM-2C25	67
Figure 4.7. Load – End-span CFRP tensile strain curves (S_1 and S_6)	
of slab S-NSM-2C25	68
Figure 4.8. CFRP tensile strains' profile of slab S-NSM-2C25	68
Figure 4.9. Load – Compressive concrete strain response of slab	
S-NSM-2C25	69
Figure 4.10. Crack pattern and mode of failure of slab S-NSM-2C16	70
Figure 4.11. Load – Mid-span deflection response of slab	
S-NSM-2C16	71
Figure 4.12. Load – Compressive concrete strain response of slab	
S-NSM-2C16	72
Figure 4.13. Crack pattern and mode of failure of slab S-NSM-2C50	73
Figure 4.14. Load – Mid-span deflection response of slab	
S-NSM-2C50	74
Figure 4.15. Load – Mid-span CFRP tensile strain curves (S_3 and S_4)	
of Slab S-NSM-2C50	75
Figure 4.16. Load – End-span CFRP tensile strain curves (S_1 and S_6)	
of slab S-NSM-2C50	76
Figure 4.17. CFRP tensile strains' profiles of slab S-NSM-2C50	76

Figure 4.18.	Load – Compressive concrete strain response of slab	
	S-NSM-2C50	77
Figure 4.19.	Crack pattern and mode of failure of slab S-EB-2C50 .	78
Figure 4.20.	Load – mid-span deflection response of slab S-EB-2C50	79
Figure 4.21.	Load – Mid-span CFRP tensile strain curves (S_3 and S_4)	
	of slab S-EB-2C50	81
Figure 4.22.	$Load-End\text{-span CFRP tensile strain curves } (S_1 \text{ and } S_6)$	
	of slab S-EB-2C50	81
Figure 4.23.	CFRP tensile strains' profiles load of slab S-EB-2C50	82
Figure 4.24.	Load – Compressive concrete strain response of slab	
	S-EB-2C50	83
Figure 4.25.	Crack pattern and mode of failure of slab S-EBA-2C50	84
Figure 4.26.	Load – Mid-span deflection response of slab	
	S-EBA-2C50	85
Figure 4.27.	Load – Mid-span CFRP tensile strain curves (S_3 and S_4)	
	of slab S-EBA-2C50	88
Figure 4.28.	Load – End-span CFRP tensile strain curves (S_1 and S_6)	
	of slab S-EBA-2C50	89
Figure 4.29.	CFRP tensile strains' profiles at failure load of slab	
	S-EBA-2C50	89
Figure 4.30.	CFRP tensile strains' at transverse anchorage for slab	
	S-EBA-2C50	90
Figure 4.31.	Load – Compressive concrete strain response of slab	
	S-EBA-2C50	91
Figure 4.32.	Crack patterns and modes of failure of all tested slabs	93

Figure 4.33.	Load-Mid-span deflection responses (D ₃) of all tested	
	slabs	102
Figure 4.34.	Load – Mid-span CFRP tensile strain curves (S ₃) of the	
	strengthened slabs	104
Figure 4.35.	$Load-Mid$ -span CFRP tensile strain curves (S_4) of the	
	strengthened slabs	106
Figure 4.36.	Load – End-span CFRP tensile strain curves (S_1) of the	
	strengthened slabs	108
Figure 4.37.	Load – End-span CFRP tensile strain curves (S_6) of the	
	strengthened slabs	109
Figure 4.38.	Comparison of the CFRP tensile strains' profiles of the	
	strengthened at 50kN	111
Figure 4.39.	Comparison of the CFRP tensile strains' profiles of the	
	strengthened slabs at failure	111
Figure 4.40.	Load – Compressive concrete strain responses of all	
	tested slabs	114
Figure 5.1. S	Stress-strain curve of the concrete in compression	119
Figure 5.2. S	Strain compatibility of concrete section strengthened	
	by NSM CFRP	124
Figure 5.3. S	Strain compatibility of concrete section strengthened	
	by externally bonded CFRP	124
Figure 5.4. S	Shear resistance and factored shear force diagram	127
Figure 5.5. I	Numerical integration of the curvature for deflection	
	calculation	131

Figure 5.6. Comparison between predicted and experimental cracking	3
load	134
Figure 5.7. Comparison between predicted and experimental ultimate	;
load	134
Figure 5.8. Predicted and experimental load-deflection of slab (S)	135
Figure 5.9. Predicted and experimental load-deflection of slab	
(S-NSM-2C25)	136
Figure 5.10. Predicted and experimental load-deflection of slab	
(S-NSM-2C16)	136
Figure 5.11. Predicted and experimental load-deflection of slab	
(S-NSM-2C50)	137
Figure 5.12. Predicted and experimental load-deflection of slab	
(S-EB-2C50)	137
Figure 5.13. Predicted and experimental load-deflection of slab	
(S-EBA-2C50)	138
Figure 5.14. Comparison between predicted and experimental	
deflections	138