Study of the Prevalence of Rickets among Infants Attending Primary Health Care Centers in Cairo

Thesis

Submitted for Partial Fulfillment of Master of Pediatrics

By Heba-T-Allah Mohamed Aly

M.B., B.Ch., Ain Shams University, 2007

Supervisors

Prof. Dr. Amani Osman Mahmoud

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Alaa Youssef Ahmed

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2016

Acknowledgement

First, thanks are all due to **Allah** for blessing this work until it has reached its end, as a part of His generous help throughout my life.

I would like to express my deepest gratitude to **Prof. Dr. Amani Osman Mahmoud**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her great support and continuous encouragement throughout this whole work. It is a great honor to work under her guidance and supervision.

I am truly grateful to **Dr. Alaa Youssef Ahmed**, Lecturer in Pediatrics, Faculty of Medicine, Ain Shams University, for her close supervision, sincere help, valuable suggestions and continuous encouragement throughout the whole work.

Contents

	Page
List of Abbreviations	III
List of Tables	V
List of Figures	VII
Introduction	1
Aim of The Work	3
Review of The Literature	4
Participants and Methods	60
Results	67
Discussion	103
Limitations	122
Summary	123
Conclusion	127
Recommendations	128
References	129
Appendix	156
Arabic Summary	,

List of Abbreviations

24HRecall	24 hour recall
7DHC	7-dehydrocholesterol
AAP	American academy of pediatrics
AAS	Atom absorption spectrophotometer
ALP	Alkaline phosphatase
ВМІ	Body mass index
FFQ	Food frequency
lu	International unit
Lt	Length
Mcg	Microgram
MED	Minimal erythamatus dose
Mg/day	Milligram/Day
Mmol/l	Millimole/litre
Мо	Month
Ng/ml	Nanogram/millilitre
Nmole/l	Nanomole/litre
NR	Nutritional Rickets
Pre-D3	Previtamin D3
PTH	Parathyroid hormone

RDA	Recommended Dietary Allowance
S	Significant
SD	Standard deviation
UV	Ultraviolet
VDD	Vit. D deficiency
Wk	Week
Wt/Lt	Weight/Length

List of Tables

No.	Table Name	Page
1	Important forms of vitamin D	9
2	Vitamin D Status in relation to 25 (OH) D levels	14
3	RDA for calcium in children	19
4	Mean serum ALP levels (U/L), -2SD, +2SD and square root transformed mean and SD values by age groups	29
5	Treatment Regimen for Vitamin D deficiency	32
6	Management of hypocalcaemia due to vitamin D deficiency	34
7	Different types of rickets	43
8	Demographic Distribution of the study sample.	69
9	Descriptive statistics of the studied sample	70
10	Data of the 9 months old sample	71
11	Data of the 18 months old sample	71
12	Comparison of calcium, phosphorus and alkaline phosphatase among the studied sample	72
13	Comparison of Ca, P, Alk P level in whole study group according to their length for age	76
14	Comparison of Ca ,P ,Alk P level in 9 month old study group according to their length for age	82

15	Comparison of Ca ,P , Alk P level in 18 months old study group according to their length for age	83
16	Description of weight for length by WHO Anthro, 2011 staging among the studied groups	85
17	Description of the studied group regarding their weight for age according to (WHO Anthro, 2011)	87
18	Description of the studied group regarding their length for age according to (WHO Anthro, 2011)	88
19	Description of studied group as regards their BMI for age according to (WHO Anthro, 2011)	89
20	Description of socio demographic data and type and complications of rickets and type of feeding in rachitic group with respect to the age	91
21	Description of feeding pattern of the rachitic group with respect to their age	93
22	Vitamin D and Calcium status among rachitic group	94
23	Description of rachitic group as regards their Weight for Length according to (WHO Anthro, 2011)	95
24	Description of rachitic group as regards their Weight for age according to (WHO Anthro, 2011)	96
25	Description of rachitic group as regards their length for age according to (WHO Anthro, 2011)	96
26	Description of rachitic group as regards their BMI for age according to (WHO Anthro, 2011)	97
27	Description of the rachitic group with respect to their age	98
28	A random sample of 27 participants was selected from whole study sample (a ratio of 3:1) and compared to rachitic group (9 participants)	100
29	Signs of clinical examination of rachitic group	101

List of Figures

No.	Figure Name	Page
1	Vitamin D metabolism	11
2	Stages of bone growth with comparison between normal and rackitic bone	18
3	Biochemical changes in calcium and phosphorus metabolism due to vitamin D or calcium deficiency, vitamin D–resistant syndromes, or hypophosphatemic syndromes	21
4	Widening and broadening of the metaphysical ends	26
5	Severe fraying	27
6	Bowing of long bones	27
7	Stosstherapy protocol	3310
8	Demographic distribution of the study sample	68
9	Error bars showing the mean serum calcium of the study sample	73
10	Error bars showing the mean serum phosphorus of study sample	74
11	Error bars showing the mean alkaline phosphatase of the study sample	75
12	Correlation of mean Ca level with length of male study participants according to their age (9m, 18m)	78
13	Correlation of mean Ca level with length of female study participants according to their age (9m, 18m)	79
14	Correlation of mean alkaline phosphatase level with length of male study participants according to their	80

	age (9m, 18m)	
15	Correlation of mean alkaline phosphatase level with length of female study participants according to their age (9mths, 18mths)	81
16	Bar chart showing the percentage of distribution of the studied infants regarding weight for length according to WHO	86
17	Error bars showing BMI for age of the study sample according to WHO	90

Introduction

Rickets is a disease of growing bones where defective mineralization occurs in both bone and cartilage of epiphyseal growth plate. The condition is associated with biochemical abnormalities, bone deformities, developmental delays, impaired growth and sometimes even seizures (in the late course of disease) (Brunner, 2015).

Rickets is a potentially devastating condition, as affected children can experience delays in learning to walk, fractures and crippling deformities. Furthermore, this disease dramatically increases the risk of pneumonia, which is a condition that contributes significantly to childhood mortality in developing regions of the world (**Brunner**, 2015).

Rickets is a disruption in the pathway of either vitamin D or phosphate metabolism (**Plotkin et al., 2014**).

There are risky groups for rickets e.g.: dark skinned infants who live at higher altitude and infants born to vitamin D deficient mothers, presence of nonspecific symptoms like poor growth, gross motor developmental delay and unusual irritability, chronic kidney disease, hepatic failure ,mal absorption syndromes. Children who receive medications like anticonvulsants, glucocorticoids, AIDS medications and antifungals (ketoconazole), also obese children (Holick et al., 2011).

Vitamin D deficiency is considered the most common nutritional deficiency and also one of the most common undiagnosed medical conditions in the world (Holick, 2012).

Rickets, once thought defeated, is reappearing and remains a major health problem in many developing and developed countries (**Plotkin et al., 2014**).

In Middle East although majority of population lives in areas receiving ample sunlight throughout the year, vitamin D deficiency is very common in all the age groups and both the sexes across the country (Marwaha and Sripathy, 2008; Harinarayanan and Joshi, 2009).

Limited sunlight exposure, exclusive or prolonged breastfeeding without vitamin D supplements, gestational vitamin D deficiency and low socioeconomic status have a key role in the pathogenesis of nutritional rickets (Baroncell et al., 2008).

Rickets is most common in children who are between 6 and 36 months old. During this time period, children usually experience rapid growth. This is when their bodies need the most calcium and phosphate to strengthen and develop their bones (**Cafasso**, **2012**).

Aim of The Work

The aim of the work is to determine the prevalence of rickets in Egyptian infants in Cairo at the age of 9 and 18 months of age.

Rickets

Definition

Rickets is a term applied to an abnormality of growing bones related to a failure of normal mineralization. The essential bone lesion is an accumulation of excess osteoid tissue owing to lag in the mineralization of the cartilaginous epiphyseal plate (**Kelly and Levine, 2010**).

Normal bone growth and mineralization depends on the availability of adequate calcium and phosphate (Pitt, 1991).

Etiology

While some cases relate to hereditary syndromes, renal cause, or use of medication, rickets, the state of vitamin D deficiency, has reemerged as a potential problem (**Rajakumar et al., 2007**).

Vitamin D deficiency is observed among breastfed infants at one end with dietary calcium deficiency in older children at the other end. Between these two extremes, it is likely that vitamin D insufficiency and decreased calicum intake or high phytate intake combine to induce Vitamin D deficiency and rickets, which may be the most frequent cause of rickets globally (**Pettifor**, **2004**).

Classification

Rickets may conveniently be classified in to:

- 1) Calciopenic rickets can result from inadequate vitamin D, defective utilization of vitamin D or inadequate calcium and includes:
 - ❖ Nutritional vitamin D deficiency
 - Calcium deficiency
 - ❖ Vitamin D deficiency secondary to :
 - Malabsorption
 - Antiepileptic drug therapy
 - Chronic renal failure
 - Liver failure
 - Distal renal tubular acidosis
 - 25 hydroxylase deficiency in liver (rare)
 - Vitamin D resistant rickets
- **2) Phosphopenic rickets** is not common, but occurs in special situations :
 - Low phosphorous intake
 - Prematurity/ Total parenteral nutrition
 - * Renal phosphate wasting
 - Proximal renal tubular acidosis
 - Fibrous dysplasia
 - Oncogenic hypophosphataemic rickets
 - •Hereditary hypophosphataemic rickets:
 - X -linked dominant (XLH)

- Autosomal dominant
- Autosomal recessive
- Hereditary hypophosphataemia with hypercalciuria
 (HHRH) (Atapattu, 2013).

The most frequent cause is vitamin D deficiency, which may arise from poor diet, lack of sunlight, malabsorption of fat soluble nutrients.

There are several types of cells constituting the bone. Osteoblasts are bone forming cells which lay down osteoid. Osteoclasts help in bone remodeling. Osteoid is subsequently mineralized by calcium salts. In rickets, the mineralization defect leads to the accumulation of osteoid in the bone tissue below the growth plate (metaphysis). This leads to weak bones and bowing over a period of time (Sahay and Sahay, 2012).

Nutritional rickets (NR) is still the most common form of growing bone disease despite the efforts of health care providers to reduce the incidence of the disease. Among the factors responsible for the high prevalence of Vitamin D deficiency (VDD) in developing countries and its resurgence in developed countries is limited sunshine exposure due to individuals' spending more time indoors (watching television and working on computers) or avoiding sun exposure intentionally for fear of skin cancer. Traditional clothing (covering the entire body except the face and