Studies on Novel Pathways for Activation of Nitrile(s)

A Thesis Submitted in Partial Fulfillment of the Requirements for the Masters Degree in Pharmaceutical Sciences (Pharmacology and Toxicology)

By

Sherry Nasralla Tawfik Nasralla

B.Sc. in Pharmaceutical Sciences., Ain Shams University (2002)

Demonstrator of Pharmacology and Toxicology

Faculty of Pharmacy, Ain Shams University

Under the Supervision of

Prof. Amani E. Khalifa

Professor and Head of the Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University

Prof. Mohammed Z. Gad

Professor of Biochemistry, Faculties of Pharmacy, Ain Shams University and The German University in Cairo

Dr. Asser I. Ghoneim

Lecturer, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Department of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University, Cairo, Egypt 2009

Examination Board Approval Sheet

Name of Candidate

Sherry Nasralla Tawfik Nasralla

Title of Thesis

Studies on Novel Pathways for Activation of Nitrile(s)

Submitted to the Faculty of Pharmacy

Ain Shams University

Department of Pharmacology and Toxicology

Approved by the committee in charge:

- 1. Prof. Amani E. Khalifa
- 2. Prof. Mohammed Z. Gad
- 3. Prof. Osama A. Badary
- 4. Prof. Evan. I. Saad

Date: 26 / 7 / 2009

Pre-requisite Post-Graduate Courses

Besides the work presented in this thesis, the candidate has attended the following courses:

General courses:

- 1. Statistics
- 2. Instrumental Analysis
- 3. Computer Sciences
- 4. Physical Chemistry

Special Courses:

- 1. Neuropharmacology
- 2. Clinical Toxicology
- 3. Experimental Pharmacology
- 4. Molecular Pharmacology
- 5. Selected Topics in Pharmacology and Toxicology

She has successfully passed examinations in these courses with the general grade of *Excellent*.

Head of Pharmacology and Toxicology Department

Prof. Amani Emam Khalifa

Acknowledgements

These pages are but a modest attempt to acknowledge the people who actively and sincerely dedicated their efforts in making this work possible.

I would like express my deepest gratitude and respect to Prof. Amani E. Khalifa, Professor and Head of the and Toxicology Department, Faculty of Pharmacology Pharmacy, Ain Shams University, for her persistent support and sustained guidance throughout this work, her unfailing belief in my ability to complete it and her perseverance in making it possible. I would also like to convey my appreciation to Prof. Mohammed Z. Gad, Professor of Biochemistry, Faculties of Pharmacy, Ain Shams University and The German University in Cairo, for his valuable insight into the thesis and enthusiasm, furthermore for his promptness and encouragement in reviewing it. Special thanks to Dr. Asser I. Ghoneim, for his challenging comments and valuable contributions to the thesis.

I am deeply indebted to Prof. Ashraf B. Abdel-Naim, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University for introducing me and raising my interest in this line of research and for his persistent mentorship and guidance throughout this work. I would like to express my gratitude to Dr. Marian G. Tadros, for her dedication and assistance with many technicalities at the college, and moreover for being a true friend.

I would wholeheartedly like to thank every member of my family for supporting me at all possible levels in completing this work. I would like to thank my husband, for being an active listener, a problem solver and a frustration buffer at hard times and moreover for his sustained encouragement and support. I am deeply indebted to my parents and my in-laws for their concern, dedication and mostly for their time and efforts in entertaining my daughter during my long hours away from home. I am grateful for my sister for her enthusiasm, devotion and insight in drawing some of the chemical pathways depicted in this thesis. To my uncle and aunt, I am grateful, for their assistance in many technical issues. A special word of thanks to my friends for proofreading the thesis and openly providing me with positive criticism.

Sherry Nasralla

Table of Contents

Contents	Page
List of Tables	vii
List of Figures	ix
Abstract	xii
List of abbreviations	xv
Introduction	1
Acrylonitrile	2
Lactoperoxidase	24
Aim of the Work	35
Materials and Methods	40
Materials	41
Design of the Work	48
Methods	51
Results	6 7
Discussion	111
Summary and Conclusions	148
References	152
Arabic Summary and Conclusions	183

List of Tables

Tables	Page
Table 3.1 Effect of Fe^{+2} concentration on CN production from ACN by the Fenton Reaction	64
Table 4.1 Effect of temperature on CN production by the $LPO/H_2O_2/ACN$ System	70
Table 4.2 Effect of pH on CN production by the $LPO/H_2O_2/ACN$ System	73
Table 4.3 Effect of Incubation Time on CN production by the LPO/ H_2O_2 /ACN System	76
Table 4.4 Effect of LPO concentration on CN production by the LPO/ H_2O_2 /ACN System	<i>79</i>
Table 4.5 Effect of H_2O_2 concentration on CN production by the LPO/ H_2O_2 /ACN System	82
Table 4.6 Effect of ACN concentration on CN production by the $LPO/H_2O_2/ACN$ System	85
Table 4.7 Optimum parameters for CN production by the $LPO/H_2O_2/ACN$ System	87

Table 4.8 Effect of NO_2^- concentration on CN production by the $LPO/H_2O_2/ACN$ System	91
Table 4.9 Effect of Inhibitors on CN production by the LPO/ H_2O_2/ACN System	96
Table 4.10 Effect of Halides on CN production by the $LPO/H_2O_2/ACN$ System	101
Table 4.11 Effect of Sulfhydryl Compounds on CN production by the $LPO/H_2O_2/ACN$ System	105
Table 4.12 Effect of SOD and Mannitol CN production by the LPO/ H_2O_2 /ACN System in the presence of GSH	109

List of Figures

Figures	Page
Figure 1.1 SOHIO Process for the production of ACN	3
Figure 1.2 Biotransformation of ACN	18
Figure 1.3 The prosthetic heme group in LPO is bound to the protein through ester bonds between two of its methyl groups and Glu375 and Asp225 of the protein	25
Figure 1.4 The general reaction scheme of mammalian peroxidases	28
Figure 1.5 The general mechanism of peroxidases	29
Figure 1.6 Reactions of LPO with nitrite	32
Figure 1.7 Reactions of LPO with thiocyanate	33
Figure 3.1 Conway Microdiffusion Cell	46
Figure 3.2 Wheaton Scintillation Vials	46
Figure 3.3 Orion Double Junction Silver/Silver chloride Reference Electrode	47

Figure 3.4 Orion Silver/Sulfide Ion Selective Electrode	47
Figure 3.5 Design of the work	50
Figure 3.6 Standard Curve of CN	54
Figure 3.7 Fenton Reaction	61
Figure 3.8 Effect of Fe^{+2} concentration on CN Production from ACN by the Fenton Reaction	65
Figure 4.1 Effect of Temperature on CN Production by the LPO/ H_2O_2 /ACN System	71
Figure 4.2 Effect of pH on CN Production by the $LPO/H_2O_2/ACN$ System	74
Figure 4.3 Effect of Incubation Time on CN Production by the LPO/ H_2O_2 /ACN System	77
Figure 4.4 Effect of LPO concentration on CN Production by the LPO/ H_2O_2 /ACN System	80
Figure 4.5 Effect of H_2O_2 concentration on CN Production by the LPO/ H_2O_2 /ACN System	83
Figure 4.6 Effect of ACN Concentration on CN Production by the LPO/ H_2O_2 /ACN System	86
Figure 4.7 Kinetics of ACN Metabolism to CN by the LPO/H ₂ O ₂ /ACN System	89

Figure 4.8 Effect of NO_2^- concentration on CN production by the LP	92
Figure 4.9 Effect of Inhibitors on CN production by the LPO/H ₂ O ₂ /ACN System	97
Figure 4.10 Effect of Halides (0.1 mM $-$ 10 mM) on CN production by the LPO/ H_2O_2 /ACN System	102
Figure 4.11 Effect of Halides (>10 mM) on CN production by the LPO/ H_2O_2 /ACN System	103
Figure 4.12 Effect of Sulfhydryl Compounds on CN production by the LPO/ H_2O_2 /ACN System	106
Figure 4.13 Effect of SOD and Mannitol on CN production by the $LPO/H_2O_2/ACNS$ ystem in the presence of GSH	110
Figure 5.1 Proposed pathway for activation of ACN by the LPO/ H_2O_2 System to generate CN	119
Figure 5.2 LPO redox states during interaction with ACN to generate CN	120

Abstract

Acrylonitrile (ACN) is a well reported animal carcinogen and a reasonably anticipated human carcinogen. ACN poses a predicament for researchers who proved the necessity of its activation by the cytochrome P450 2E₁ enzyme, to induce carcinogenicity, yet, was reported to cause tumors in organs with diminished levels of the enzyme. The lactoperoxidase (LPO) enzyme is well reported for its multiple health benefits. however, the ability of the enzyme to activate pro-carcinogens is not fully explored. The aim of the present study was to investigate the ability of the LPO enzyme system to activate ACN in vitro, thereby resolving the challenge posed by the toxicant. Reaction mixtures containing the LPO enzyme system and ACN were incubated, in the presence and absence of reaction modulators, and assessed for the presence of cyanide ions (CN-), used as a marker for the activation of ACN by the LPO enzyme system. Determination of CN was done by the electrochemical method described by Abreu and Ahmed (1980). Results revealed that when the reactants were incubated at a pH of 5 and a temperature of 37°C in stoichiometric ratios (5 U/ml LPO, 0.5 mM H₂O₂ and 160 mM ACN) for 15 minutes, the LPO system was able to activate ACN proved by the generation of detectable levels of CN. Furthermore, the presence of nitrite (NO₂) was found to enhance the reaction while free radical scavengers and

competitors for LPO binding were found to inhibit it. Fluoride (F') and iodide (I') were potent inhibitors of LPO induced ACN activation, while the presence of bromide (Br') and chloride (Cl') was indifferent. The rate of CN generation was found to be enhanced in the presence of sulfhydryl compounds, but further investigation revealed a non-enzymatic CN extraction mechanism from ACN in the absence of free radical generation. A pathway depicting the activation of ACN by the LPO enzyme system was proposed, with the possible interventions and roles of various ions tested on the system. Collectively, results demonstrated the ability of the LPO enzyme system to activate ACN which may provide insight for elucidation of the mechanism of its carcinogenicity and presents a novel pathway for its activation.

Keywords: Acrylonitrile, Lactoperoxidase, Cyanide, Activation, in-vitro.

List of Abbreviations

ACN: Acrylonitrile

ACN : Acrylonitrile radical

Cat.: Catalase

CEO: Cyanoethylene oxide

CN⁻: Cyanide anion

CYP 450: Cytochrome P450

GSH: Reduced Glutathione

H₂O₂: Hydrogen peroxide

HRP: Horseradish peroxidase

IMN.: Indomethacin

KCN: Potassium cyanide

LPO: Lactoperoxidase

MPO: Myeloperoxidase

NAC: N-acetyl L-cysteine

NaN₃: Sodium azide

NO₂: Nitrite anion

NO₂: Nitrite Radical

NOS: Nitric oxide synthases

 $\mathbf{O_2}^{\bullet}$: Superoxide anion

OH⁻: Hydroxyl anion

OH : Hydroxyl radical

ROS: Reactive oxygen species

SA: Salicylic acid

SOD: Superoxide dismutase