Assessing the applications of Cortical Auditory Evoked Potentials as a biomarker in Cochlear implant children

Thesis Submitted For Partial Fulfillment Of Medical Degree (M.D) in Audiology

BY

Hoda Mahmoud Weheiba M.Sc Audiology

Under supervision of

Prof. Dr .Ismail Zohdi Mostafa

Head and Professor of Otorhinolaryngology
E.N.T. Department
Cairo University

Prof. Dr. Mohamed Ibrahim Shabana

Head and Professor of Audiology unit
E.N.T. Department
Cairo University

Dr. Amira Maged El Shennawy

Assistant Professor of Audiology
E.N.T. Department
Cairo University

Faculty of Medicine –Cairo University 2013

Acknowledgements

Thanks to **God** for his entire great blessing who helped me accomplish this work.

My deepest and warmest gratitude to my great supervisor **Prof. Dr. Ismail Zohdi**, professor and head of Otorhinolaryngology, Faculty of medicine, Cairo University, for his supervision, support and advice during all phases of the work.

My deep thanks and gratitude to **Prof. Dr. Mohamed** Ibrahim Shabana professor and head of Audiology unit, Faculty of medicine, Cairo University, who in addition to his valuable guidance, supervision and intelligent instruction, has provided me with a great deal of support, encouragement and knowledge.

The present work could not have been done without the help of **Dr. Amira Maged El Shennawy**. Assistant professor of Audiology, Faculty of medicine, Cairo University. I will never forget her fruitful support, excellent guidance and sympathetic attitude. Her bright ideas and remarks together with her sincere meticulous supervision were really valuable to this work.

To my husband and my family, I can never offer them their due thanks. I can surely say is that through their help, this work was made possible. Their immense support and belief have always kept me going through the hardest of times.

I would like to thank all my professors and colleagues of Audiology unit, Faculty of medicine, Cairo University, for their continuous advice and cooperation and I acknowledge all those who helped me in this work.

And lastly I would like to thank all the children who participated in this work, without their help, this work would never have reached its goals.

Abstract:

Introduction: cortical auditory evoked potentials (CAEPs) are non invasive measures that have a unique role in identifying central auditory system that has benefited from amplification or implantation. P1 CAEP reflects the maturation of the auditory system in general as it has developed over time (**Nash et al., 2007**).

Objective: 1-To assess the cortical auditory evoked potential in cochlear implant children versus age matched controls, 2-to study the different variables affecting the results, and 3-to compare pattern of P1 CAEP in cochlear implant patients versus hearing aid patients.

Methods: A total of 55 hearing impaired children (CI and H.A) (aged 3 to 16 years), were assessed by free-field auditory responses and P1 CAEP responses using tone-bursts at 500 and 2000 Hz at 100 dB SPL. Cochlear implanted children were examined twice in two scheduled sessions. The second session was six months after the first session. The hearing impaired children's results were compared to 20 normal hearing controls.

Results: Age showed significant effect on P1 latency in the normal hearing controls. There was no statistically significant difference between using either 500 Hz or 2000Hz on P1 CAEP test results. Cochlear implant children exhibited prolongation of P1 latencies compared to normal hearing children with overall delayed maturation. P1 CAEPs latency and amplitude results improved significantly after six months of device use. There was a statistical significant negative correlation between the age of onset of deafness and P1 latencies and amplitudes among cochlear implant group with a trend of shorter latencies and decreased amplitudes in post lingual hearing loss subgroup followed by peri lingual and then pre lingual hearing loss subgroup. P1 latencies in irregular HA users pre implantation were significantly different during first and second evaluation, while in regular HA users, no significant differences were found in P1 latencies between the two recording sessions. Moreover, regularity of device use, regularity of attendance of speech sessions, or history of consanguinity had no significant effect on CI P1 latencies and amplitude measures. There was no statistically significant difference as regards P1 latencies and amplitudes between our C.I and H.A users.

Conclusions: P1 CAEP test can be applied as an objective tool for measurement of central auditory system activity in hearing impaired children fitted with cochlear implant or hearing aids. This tool can be useful when monitoring child's progress with his CI and in auditory training.

Keywords: P1 Cortical auditory evoked potential, cochlear implants, hearing impaired children, free-field auditory responses.

Contents

<u>Page</u>
Introduction and Rationale1
Aims of the work3
Review of literature5
Chapter 1: Cortical auditory evoked potentials (CAEP)-5
- Definition of cortical auditory evoked potentials5
- Categorization of CAEP9
- The slow cortical potential discovery 11
- Maturation of the CAEP waveform 14
- Deficit in the central auditory system18
Chapter 2: Cortical auditory evoked potentials and
cochlear implants 19
- CAEP and Cochlear implants19
- Positron emission topography(PET) in studying cochlear implant
patients21
- P1N1P2 complex in cochlear implant listeners 23
- Acoustic change complex (ACC) in studying of CI users 23
- A Sensitive Period for Central Auditory Nervous System
Development 24
-Early versus Late cochlear implantation25
-Conflicting maturation data about P1N1P2 Complex 30
-Clinical implications of P1 CAEP test in cochlear implant
children31
Chapter 3: CAEP and Hearing aid fitting35
-Slow Cortical Potential Measures of Amplification 36
-Electrophysiological methods of hearing aid evaluation 38
-Using the slow cortical potential (SCP) for hearing aid
evaluation39
-Possible use of P1 CAEP and behavioral measures to assess
hearing aid benefit42
- Variables affecting P1 CAEP test results44
- Current clinical applications of the CAEP 46
- The Effects of Auditory Training on P1 CAEP 47
-The audiological significance of P1 CAEP 48

List of Tables

Table No.	Title	Page
1	Age distribution among 3 studied groups	62
2	Gender distribution among 3 studied groups	62
3	Subgroups of age at implantation among cochlear implant group	63
4	Etiology of hearing loss (HL) among 2 studied groups	63
5	Age of onset of hearing loss among 2 studied groups	65
6	Duration of hearing loss among 2 studied groups	65
7	Duration of device use among 2 studied groups	65
8	Degree of hearing loss (audiologic evaluation) among hearing aid versus Normal hearing group	67
9	Residency distribution among 3 studied groups	67
10	Social class distribution among 3 studied groups	67
11	Father's occupation distribution among 3 studied groups	68
12	Mother's education distribution among 3 studied groups	68
13	History of consanguinity among 3 studied groups	68
14	Regularity of pre-implant rehabilitation H.A fitting among cochlear implant Group	69
15	Regularity of pre-implant rehabilitation language therapy sessions among Cochlear implant Group	69
16	Regularity of device use among 2 studied groups	69

17	Post implant regularity of speech session among	74
	the 2 studied groups Correlation between age and P1 wave latency and	
18	amplitude among normal controls group	74
19	Difference between P1 wave latency and amplitude	76
17	at 500 and 2000 Hz among normal controls group	70
	Relation between gender and P1 wave latency and	
20	amplitude at 500 and 2000 Hz within normal	76
	hearing controls.	
	Relation between residency and P1 wave latency	
21	and amplitude at 500 and 2000 Hz within normal	77
	controls	
	Relation between consanguinity and P1 wave	
22	latency and amplitude at 500 and 2000 Hz within	77
	normal controls.	
23	Basic Audiologic evaluation (Average aided	78
	thresholds) among cochlear implant group	
	P1 wave latency and amplitude among cochlear	
24	implant "first evaluation" versus normal hearing	79
	group	
	P1 wave latency and amplitude among cochlear	
25	implant "2nd evaluation" versus normal hearing	81
	group	
	P1 wave latency and amplitude among early	
26	implanted subgroup "first evaluation" versus	83
	normal hearing group. P1 wave latency and amplitude among early	
27	implanted subgroup "second evaluation" versus	84
41	normal hearing group.	04
28	P1 wave latency and amplitude among late	85

	implanted subgroup "first evaluation" versus Normal hearing group.	
29	P1 wave latency and amplitude among late implanted subgroup "second evaluation" versus Normal hearing group.	86
30	Relation between history of Consanguinity among cochlear implant versus normal hearing groups	87
31	Relation between age of implant and P1 wave latency and amplitude during first and second assessment among cochlear implant group	88
32	Relation between duration of implant use and P1 wave latency and amplitude during first and second assessment among cochlear implant group.	89
33	Difference between first and second Basic aided audiologic evaluation among cochlear implant group	90
34	Difference between first and second aided audiologic evaluation "Mean of all frequencies" among Cochlear implant group	91
35	Difference between P1 wave latency and amplitude during first and second evaluation across different frequencies among cochlear implant group	92
36	Comparison of latency and amplitude changes after six months between early versus late implanted sub groups	93
37	Correlation between P1 wave latency and amplitude during first versus second evaluation at the tested frequencies among cochlear implant group.	94

38	Difference between P1 wave latency and amplitude at 2 frequencies among Cochlear implant group during first and second assessment	95
39	Correlation between mean of first audiologic evaluation and P1 wave latency and amplitude during first setting.	96
40	Correlation between mean of second audiologic evaluation and P1 wave latency and amplitude during second setting.	96
41	Correlation between age at examination and P1 wave latency and amplitude as well as audiologic evaluation during first and second setting	97
42	Relation between age of onset of deafness and P1 wave among cochlear implant group	98
43	P1 wave latency and amplitude differences from first to second evaluation across different frequencies among different subgroups of hearing loss in cochlear implant children	99
44	Correlation between age of onset of hearing loss and P1 wave latency and amplitude as well as audiologic evaluation during first and second setting	100
45	Relation between pre implant hearing amplification and P1 wave latency during first and second assessment among cochlear implant group	101
46	Correlation between age at implantation and P1 wave latency and amplitude as well as audiologic evaluation during first and second setting.	103

47	Relation between regularity of C.I device use and P1wave latency and amplitude among cochlear implant group	104
48	Relation between regularity of post implant speech sessions and P1wave latency and amplitude among cochlear implant group.	105
49	P1 wave latency and amplitude among hearing aid versus normal hearing group	107
50	History of consanguinity among hearing aid group versus normal hearing group	109
51	Relation between age of onset of deafness and P1 wave among Hearing aid group.	109
52	Relation between sex and P1 wave latency and amplitude among hearing aid group.	110
53	Relation between Residency and P1 wave latency and amplitude among hearing aid group.	110
54	Relation between Consanguinity and P1 wave latency and amplitude among hearing aid group.	111
55	Relation between Social class and P1 wave latency and amplitude among hearing aid group.	111
56	Difference between P1 wave latency and amplitude at 500 and 2000 Hz among hearing aid group	112
57	Correlation between P1 wave latency and amplitude at 500 and 2000 Hz among hearing aid group.	113
58	Correlation between Age at examination and P1 wave latency and amplitude as well as audiologic evaluation among hearing aid group	114

59	Correlation between age at Hearing loss (HL) and P1 wave latency and amplitude as well as audiologic evaluation among hearing aid group.	114
60	Correlation between hearing aid fitting age and P1 wave latency and amplitude as well as audiologic evaluation among hearing aid group.	115
61	Relation between father's occupation and P1wave latency and amplitude among hearing aid group	115
62	Relation between mother's education and P1wave latency and amplitude among Hearing aid group.	116
63	Relation between Etiology and P1wave latency and amplitude among Hearing aid group.	116
64	Relation between regularity of hearing aid use and P1wave latency and amplitude among Hearing aid group.	117
65	Relation between regularity of speech sessions and P1wave latency and amplitude among Hearing aid group.	117
66	Comparison of P1 latencies and amplitudes across 500 and 2000 Hz among studied groups (normal hearers, cochlear implant users and hearing aid users).	118

List of Figures

Figure	Title	Dogo
No.	Title	Page
1	A simplified representation of the auditory	5
-	pathway, when excited unilaterally via the left cochlea	
	Auditory evoked potentials are divided into early	7
2	or brainstem auditory evoked potentials (BAEP),	
	middle latency auditory evoked potentials (MLAER), and long latency auditory evoked	
	(MLAEP), and long latency auditory evoked potentials (LLAEP).	
	Cortical auditory evoked potential (CAEP) of	10
3	an infant (2 years, 11 months) in response to	
	the word "bad".	
4	Maturation of cortical auditory evoked	15
4	potentials (CAEP) from newborn to infant,	
	child, and adult waveforms	1.0
5	Decreases in latency values for P1 as a	16
	function of age for children aged from six to 15 years old	
	•	17
6	P1 latencies versus age function for normal hearing children	-,
	Sound enters the microphone (1) and is	20
7	passed on to the speech processor (2) which	
,	analyses and translates the signal into an	
	electronic code.	
8	Grand average CAEPs for children who	26
	received cochlear implants prior to 3.5 years	

	and after 7 years	
	Cortical auditory evoked potentials of a child	27
	at their initial hearing aid fitting (HAF), and	
	at 3 months post-HAF, then at their cochlear	
9	implant (CI) hook-up, and at 3 months and 12	
	months post-CIF. Panel B shows P1 latency	
	as a function of age against the 95%	
	confidence intervals for normal hearing	
	children	
	Cortical auditory evoked potentials of a child at	28
4.0	their initial hearing aid fitting (HAF), and at 5	
10	months and 18 months post-HAF .Panel B shows	
	P1 latency as a function of age against the 95%	
	confidence intervals for normal hearing children.	
	Cortical auditory evoked potentials of a child	29
	at 10 months post-HAF (hearing aid fitting),	
11	then at 1 month, 6 months, and 18 months	
	post-CIF. Panel B shows P1 latency as a	
	function of age against the 95% confidence	
	intervals for normal hearing children.	
12	P1 Cortical auditory evoked potential	55
	(CAEP) waveforms.	57
	P1 CAEP of a 4 years C.I child after 3	56
13	months of device use (first recording	
	session). P1Latency=201msec ,	
	amplitude=4.1uv	_
14	P1 CAEP of a 4 years C.I child after 6	57
_ •	months (Second recording session).	

15	A photograph of the testing room.	58
16	Etiology of hearing loss (in percentage) among cochlear implant group	64
17	Etiology of hearing loss (in percentage) among Hearing aid group	64
18	Mean of pure tone thresholds for normal controls group "right and left ears	66
19	Mean of unaided free field warble tone thresholds for hearing aid group	66
20	P1 latency at 500 Hz in relation to chronological age for normal hearing group. The solid lines are the 95% confidence limits for the normal development of the P1 response.	70
21	P1 latency at 2000 Hz in relation to chronological age for normal hearing group. The solid lines are the 95% confidence limits for the normal development of the P1 response.	71
22	P1 amplitude at 500 Hz in relation to chronological age for normal hearing group. The solid lines are the 95% confidence limits for the normal development of the P1 response.	72
23	P1 amplitude at 2000 HZ in relation to chronological age for normal hearing group. The solid lines are the 95% confidence limits for the normal development of the P1 response.	73
24	Difference between P1 wave latency at 500 and 2000 HZ among normal controls group	75