EARLY DIAGNOSIS OF PLANT DISEASES CAUSED BY Ganoderma spp.

By

LABIBA AHMED REDA

B.Sc. Agric. Sc. (Plant pathology), Ain Shams University, 2001 M.Sc. Agric. Sc. (Plant pathology), Ain Shams University, 2008

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Plant Pathology)

Department of Plant Pathology Faculty of Agriculture Ain Shams University

Approval Sheet

EARLY DIAGNOSIS OF PLANT DISEASES CAUSED BY Ganoderma spp.

By

LABIBA AHMED REDA

This thesis for Ph.D. degree has been approved by:

Date of Examination: 22 / 9 / 2013

B.Sc. Agric. Sc. (Plant pathology), Ain Shams University, 2001 M.Sc. Agric. Sc. (Plant pathology), Ain Shams University, 2008

Dr. Mohamed Anwar Abd-Elsattar Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Suez Canal University Dr. Ibrahim Sadek Elewa Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University Dr. Mostafa Helmy Mostafa Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University Dr. Mohamed Aly Ahmed Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University

EARLY DIAGNOSIS OF PLANT DISEASES CAUSED BY Ganoderma spp.

By

LABIBA AHMED REDA

B.Sc. Agric. Sc. (Plant pathology), Ain Shams University, 2001 M.Sc. Agric. Sc. (Plant pathology), Ain Shams University, 2008

Under the supervision of:

Dr. Mohamed Aly Ahmed

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Mostafa Helmy Mostafa

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

Dr. Magdy Gad-Elrab Mohamed El - Samman

Prof. of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

التشخيص المبكر للأمراض النباتية المتسببه عن أنواع فطر Ganoderma

رسالة مقدمة من

لبيبة أحمد رضا

بكالوريوس علوم زراعية (أمراض النبات)، جامعة عين شمس، 2001 ماجستير علوم زراعية (أمراض النبات)، جامعة عين شمس، 2008

للحصول على

درجة دكتور فلسفة في العلوم الزراعية (أمراض النبات)

قسم أمراض النبات كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة المتسببه عن أنواع التشخيص المبكر للأمراض النباتية المتسببه عن أنواع فطر Ganoderma

رسالة مقدمة من

لبيبة أحمد رضا

بكالوريوس علوم زراعية (أمراض النبات)، جامعة عين شمس، 2001 ماجستير علوم زراعية (أمراض النبات)، جامعة عين شمس، 2008

للحصول على درجة دكتور فلسفة في العلوم الزراعية (أمراض النبات)

	وقد تمت مناقشة الرسالة والموافقة عليها
: -	وقد تمت مناقشة الرسالة والموافقة عليها اللجنــ
	د. محمد أنور عبد الستار
اعة، جامعة قناة السويس	أستاذ أمراض النبات المتفرغ ، كلية الزر
	د. أبراهيم صادق عليوة
عة، جامعة عين شمس	أستاذ أمراض النبات المتفرغ ، كلية الزرا
	د. مصطفی حلمي مصطفی
اعة، جامعة عين شمس	أستاذ أمراض النبات المتفرغ ، كلية الزر
	د. محمد علي أحمد
اعة، جامعة عين شمس	أستاذ أمراض النبات المتفرغ ، كلية الزر

تاريخ المناقشة: 22 / 9 /2013

جامعة عين شمس كلية الزراعة

رسالة دكتوراه

اسم الطالب : لبيبة أحمد رضا

عنوان الرسالة : التشخيص المبكر للأمراض النباتية المتسببه عن

أنواع فطر Ganoderma

اسم الدرجة : دكتور فلسفة في العلوم الزراعية (أمراض النبات)

لجنة الإشراف:

د. محمد على أحمد

أستاذ أمراض النبات المتفرغ ، قسم أمراض النبات، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي).

د. مصطفی حلمی مصطفی

أستاذ أمراض النبات المتفرغ ، قسم أمراض النبات، كلية الزراعة ، جامعة عين شمس

د. مجدي جاد الرب محمد السمان

أستاذ أمراض النبات ، قسم أمراض النبات، كلية الزراعة ، جامعة عين شمس

تاريخ السجيل: 13 / 10 / 2008

الدراسات العليا

أجيزت الرسالة بتاريخ 22 / 9 / 2013 ختم الإجازة

موافقة مجلس الجامعة

موافقة مجلس الكلية

2013 / /

2013 / /

ABSTRACT

Labiba Ahmed Reda: Early Diagnosis of Plant Diseases Caused by *Ganoderma* spp. Unpublished Ph.D. Thesis, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2013.

Fifteen *Ganoderma* isolates were collected from five naturally diseased host plants i.e. navel orange, morus, casuarina, date palm and fan palm from two governorates in Egypt i.e. Kalyubia and Giza.

Morphological observation, cultural characteristics and chemical test revealed that all fifteen isolates of *Ganoderma* associated with *Ganoderma resinaceum* and *Ganoderma lucidum*.

Phylogenetic analysis of ITS1 sequences revealed that the selective five isolates (1, 4, 7, 10, 13) belong to a single species i.e. *Ganoderma resinaceum*.

Pathogenicity test of five *Ganoderma* isolates, obtaind from naturally diseased navel orange, morus, casuarina, date palm and fan palm plants was carried out under greenhouse conditions. Pathogenicity test revealed that all fungal isolates were pathogenic to their host plants. These isolates caused root-rot symptoms, suddenly wilt without any yellowing symptoms, dieback of twigs and branches on artificially inoculated navel orange grafted on sour orange rootstocks. Visible symptoms were distinguished 12 months after inoculation of young trees.

The same symptoms were observed on navel orange grafted on volkamer lemon rootstocks artificially inoculated with two *Ganoderma* spp. (isolate1 and 13). Meanwhile root-rot symptoms, a slight distinct yellowing and desiccation of the lower leaves were showed on fan palm plants artificially inoculated with *Ganoderma* spp. (isolate1 and 13) 6 months after inoculation.

Polymerase chain reactions (PCR) were used for the confirmation of pathogenicity in inoculated plants using primers Gan1 and Gan2 generated from internal transcribed spacer region of rDNA. Primers Gan1 and Gan2 amplified a DNA fragment of the size of 167 bp when DNA of *Ganoderma* isolates were used for amplification. The amplification of a 167-bp PCR product was achieved with inoculated roots of sour orange rootstocks and volkamer lemon rootstocks 6 months after inoculation with tested *Ganoderma* isolates before disease symptoms had been expressed. Meanwhile the amplification of a 167-bp PCR product was achieved with inoculated roots of fan palm plants 5 months after inoculation with *Ganoderma* isolates before disease symptoms had been expressed. No PCR signal of *Ganoderma* DNA was observed in non-inoculated (healthy) roots. The DNA extract could be diluted up to 1:10 to get a positive reaction.

Physiological studies revealed that the tested fungal isolates produced cellulase, pectin degrading enzymes either in cultural filtrates or of plant tissues.

Data showed an ability of fungal isolates for degradation of lignin on wood chips.

Severe degradation of lignin was detected in young trees of navel orange grafted on sour orange and navel orange grafted on volkamer lemon artificially inoculated with tested fungal isolates. Degradation of lignin in inoculated fan palm seedlings was not significant.

Results showed that no toxins were found in G. resinaceum liquid medium.

Results indicated that the temperature of incubation has greeted effect of sour orange root pieces colonization by both *G. resinaceum* isolates. At 15 °C, rate of colonization of sour orange by both tested isolates was very poor. The fungus attracted to wound area indicated

chemotaxis effect of root pieces on fungal growth. It could be conclude that 20-30 °C is the optimum for colonization of root pieces by both isolates. Isolate No. 13 tend to be more aggressive at 35 °C, and isolate No. 1 was more aggressive at 25 °C.

Scanning electron microscopy revealed that both isolates had great effect on phloem elements and xylem vessels. Fungal hyphae were shown on xylem vessels at different temperature degrees of incubation. Moreover, tylosis was evident in many cases.

Key words: *Ganoderma resinaceum*, pathogenicity, isolation, early diagnosis, PCR, internal transcribed spacer, ITS1, Isolation, navel orange, morus, casuarina, date palm, fan palm, root- rot, taxonomy, Morphological characteristics, cultural characteristics, Laccate fungi, basidiospores, chlamydospores, hyphal system, cutis, Phylogeny, Wood-decay fungi, ligninolytic enzymes, pectintranseliminase, cellulolytic enzyme, cellulase, toxin, Scanning electron microscopy.

ACKNOWLEDGEMENT

I wish to express my deep thanks to **ALLAH** who fulfilled my hopes and promise to offer every possible aid for any one in need to it.

I am deeply indebted to **Prof. Dr. Mohamed Aly Ahmed,** Prof. of Plant Pathology, Faculty of Agric., Ain Shams Univ.,for suggesting the research work, kind supervision, his encouragement, valuable advice and guidance during this work and the preparation of this manuscript.

I am particularly grateful to **Prof. Dr. Mostafa Helmy Mostafa,** Prof. of Plant Pathology, Faculty of Agric., Ain Shams Univ., for suggesting the current study, his kind supervision, assistance sincere advice and guidance during this work and the preparation of this manuscript.

I would like to thank **Prof. Dr. Magdy Gad-Elrab Mohamed El – Samman**, Prof. of Plant Pathology, Faculty of Agric., Ain Shams Univ., for his supervision

I would like to thank **Dr. Naglaa M. Ebeed,** Associate Prof. of genetics, Faculty of Agric., Ain Shams Univ., for suggesting the current study, her kind supervision, assistance sincere advice and guidance during this work and the preparation of this manuscript.

Special thanks to all staff members of genetics Dept. Faculty of Agric., Ain Shams Univ., for their helping, fruitful advising and faithful encouragement during the progrees.

Finally, I am indebted to thank my family for their continuous encouragement.

CONTENTS

Title	Page
List of Tables	IV
List of Figures	VII
I. Introduction	1
II. Review of Literature	5
1. Host range	5
2. The behavior of <i>Ganoderma</i> on their hosts	6
3. Isolation	8
4. Pathogenicity	9
5. Identification	10
5.1. Traditional method	10
5.1.1. Morphological features	10
5.2. Cultural features	13
5.3. Molecular identification, sequence and phylogenetic	
analysis	14
6. Early diagnosis	16
7. Extracellular enzymes	18
8. Toxin production	22
III. Materials and Methods	23
1. Source of fungal isolates and diseased plant samples	23
2. Isolation, Purification and Maintenance	23
3. Identification of causal organism	23
3.1. Morphological identification.	24
3.1.1. External morphological features	24
3.1. 2. Internal morphological features	24
3.1. 3. Scanning electron microscopy	24
3.2. Cultural characteristics and chemical tests	25
3. 3. Molecular identification	25
3.3.1.DNA extraction, polymerase chain reaction	
(amplification), sequence and phylogenetic analysis	25

8.1. Colomi	zation of sour orange (Citrus aurantium) root pieces
by Gar	aderma resinaceum at different temperature degrees
of incu	bation
8.2. Scannii	ng electron microscopy studies
IV. Result	s
1. Source of	fungal isolates and diseased plant samples
2. Isolation,	purification and maintenance
3. Identifica	tion of the causal organisms
3.1.Morpho	logical features, cultural characteristics and chemical
test	
3.2.Molecu	ar identification (amplification, sequence and
phylog	enetic analysis)
4. Artificial	inoculation
5. Early dia	gnosis
6. Physiolog	gical studies
6.1. Cellula	se activity
6.2. Pectin t	ranseliminase (s) activity
6.3. Lignin	degradation
7. Bioassay	of toxin (detached leaf assay)
8. Coloniza	tion of sour orange (Citrus aurantium) root pieces by
Gandern	na resinaceum at different temperature degrees of
incubation	on and Scanning electron microscopy studies
8.1. Coloni	zation of sour orange (Citrus aurantium) root pieces
by Gar	aderma resinaceum at different temperature degrees
of incu	oation
8.2 Scannin	g electron microscopy studies
	ion
V. Discuss	

LIST OF TABLES

Table	Title	Page
Table 1	Morphological features, cultural characteristics	
	and chemical test of Ganoderma isolates	64
Table 2	List of five Ganoderma isolates	66
Table 3	Determination of cellulase [ß (1-4) glucanase]	
	activity (as µg glucose min ⁻¹ g ⁻¹ sample) in	
	Czapex's medium 10 days after inoculation	
	with the tested pathogenic Ganoderma	
	resinaceum isolates	87
Table 4	Determination of cellulase [ß (1-4) glucanase]	
	activity (as µg glucose min ⁻¹ g ⁻¹ sample)	
	extracted from sour orange rootstock roots	
	(Citrus aurantium) inoculated with	
	Ganoderma resinaceum isolates 6, 9 and 12	
	months after inoculation, respectively	87
Table 5	Determination of cellulase [ß (1-4) glucanase]	
	activity (as µg glucose min ⁻¹ g ⁻¹ sample)	
	extracted from volkamer lemon rootstock	
	roots (Citrus volkameriana) inoculated with	
	Ganoderma resinaceum isolates 6, 9 and 12	
	months after inoculation, respectively	88
Table 6	Determination of cellulase [ß (1 - 4) glucanase]	
	activity (as µg glucose min ⁻¹ g ⁻¹ sample)	
	extracted from fan Palm roots (Washingtonia	
	filifera) inoculated with pathogenic	
	Ganoderma resinaceum isolates 6 months after	
	inoculation, respectively	88
Table 7	Cellulase [ß (1-4) glucanase] activity in	
	inoculated sour orange rootstock roots (Citrus	