AL-AZHAR University Faculty of Medicine Department of pediatrics

Newborn Hearing Screening Program In Alexandria

Thesis

Submitted for the partial fulfillment of Master degree in pediatrics

By Rania Abd Al-Hady Ahmad Al-Esawy

Supervised by

Mohammad Mohammad Almazahy MD

Professor and head of department of pediatrics and neonatology Faculty of Medicine Al-AZHAR University-Damietta

Hany Abdalhady AlKhalegy

Lecturer of pediatrics Faculty of Medicine Al-AZHAR University-Damietta

Hany Mohammad Hammed Hussein

Consultant of ENT General Authority for Health Insurance in Alexandria North West Delta

> Faculty of Medicine AL-AZHAR University Damietta 2013

First of all, I wish to express my endless thanks to ALLAH for giving me the help to perform this work

I would like to express my deepest thanks and highest appreciation to **Prof. Mohamed Mohamed Elmazahy professor and head of department of pediatrics, faculty of medicine, Al-Azhar University – Damietta**, for his valuable help, precious advice, continuous encouragement and constructive guidance that were the most driving forces for the initiation, progress and completion of this work.

I would like to express my deepest thanks and highest appreciation to **DR.Hany Abdel hady ElKhalegy lecture of pediatrics faculty of medicin ,AI-Azhar University -Damietta**, for his continuous support, enriching observations and sincere advice throughout this work.

This work wouldn't come to light without the help, patience, co-operation and precious advice of DR. Hany Mohammed Hammed Hussein consultant of ENT, Alexandria Health Insurance hospital, I would like to express a lot of thanks for him, for his encouragement.

Also, I would like to convey my special thanks to my family for their constant support.

Rania Abd Al hady Ahmed El -Esawy

LIST OF CONTENTS

Title	Page No.
List of tables	
List of figures	V
List of Abbreviations	VII
Introduction	1
Aim of the work	4
Literature review	5
-Anatomy of the auditory system	5
-physiology of hearing	11
-Basic acoustics	15
-hearing loss	18
-Auditory screening in neonates	48
subjects and method	58
Results	67
Discussion	88
Recommendations	105
Summary and conclusions	106
References	109
Appendices	133
Arabic summary	

LIST OF TABLES

Tab. No.	Title		Page	No.
Tab.(1):communicatio	ns and language mi	lestone in the	e 1st 2 years	14
Tab.(2):hypoxic ischer	mic encephalopathy	classification	n modified from	sarnat
and sarnat classificatio	n (1976)			39
Tab.(3): demographic	characteristic of th	e studied san	nple	68
Tab.(4):prevalence of	hearing affection b	etween contr	ol And risk gro	oup68
Tab.(5):incidence of b	pilateral and unilate	ral hearing lo	ss between cont	trol and
risk group				69
Tab.(6):incidence of h	nearing affection acc	cording to ger	nder	70
Tab.(7):incidence of he	earing affection acc	ording to gen	der between stu	beibu
groups				71
Tab. (8):degree of hear	ring loss in the affec	cted cases		72
Tab.(9):frequency of r	isk factors (irrespec	ctive to hearin	ng loss)in the Ri	sk factor
group				73
Tab.(10):association	between	risk	factors	and
impairment				74
Tab.(11): the most frequ		-	-	_

Tab.(12): prevalence of hearing loss in the single risk group according to risk
factors
Tab.(13): incidence of hearing affection between single risk group and multiple
risk group76
Tab.(14): prevalence of hearing affection between subgroups of multiple risk
group according to the number of risk factors77
Tab.(15): prevalence of hearing loss in cases mechanically ventilated cases> 5 days between single risk and multiple risk groups
Tab.(16): prevalence of hearing loss according to +ve family history of SNHL
between single and multiple risk groups79
Tab.(17): prevalence of hearing affection in cases with hypoxic ischemic
encephalopathy according to the stage of HIE79
Tab.(18): distribution of hearing loss in hyperbillirubinemic cases
between single and multiple risk groups80
Tab.(19): prevalence of hearing loss in hyperbillirubinemia cases according to
presence or absence of neurological manifestations80
Tab.(20): hearing affection between single and multiple risk groups in relation to Aminoglycosides administration > 7 Days
Tab.(21): hearing affection in relation to duration of Aminoglycosides
administration 91

Tab.(22): results of hearing screening protocol in the control group82
Tab.(23): results of TOAEs between single and multiple risk group83
Tab.(24):results of ABR in the single risk group and multiple risk group83
Tab.(25):Accuracy of TOAE against ABR results84
Tab.(26):sensitivity, specificity ,ppv , npv, and agreement of TOAE against ABR
in the single risk group and multiple risk group85

LIST OF FIGURES

Fig. No.	Title	Page
Figure (1):anato	omy of the ear	5
Figure(2): anato	omy of the tympanic membrane	7
Figure(3):section	on of ossicles	8
Figure(4):section	on of cochlea	9
Figure(5):organ	of corti	10
Figure(6):diagra	am of a sound wave	15
Figure(7):the rel	lation between frequency of a sound and pressure Changes	17
Figure(8): algorit	thm of the screening protocol in the control group	61
Figure(9):algorit	thm of the screening protocol in the high risk group	62
Figure(10):intel	Iligent hearing smart-OAE	63
Figure(11):biolo	ogic system corp. navigator pro-unit	64
Figure(12):Maio	co(MI 34)Tymo-screen	.66
Figure (13):dist	ribution of the studied groups	67
Figure (14):dist	ribution of hearing loss between control group and	
risk group		69
-	ribution of bilateral and unilateral hesring loss between	
	ribution of hearing loss between single and multiple risk	.77

Figure (17):prevalence of hearing loss according to number of risk	
factors	78
Figure (18):one month old baby during performing ABR test	.86
Figure (19):ABR with normal waveforms in both right and left ears	.86
Figure (20):abscent ABR waveforms at 90 dbnhl in both right and left	
ears	87

LIST OF ABBREVIATIONS

Abbrev.	Meaning
• ABR	Auditory Brain Stem Response
AAP	American Academy of pediatric
AAA	American Academy of Audiology
• CHL	Conductive Hearing Loss
• Db	decibel
• DW	Down Syndrome
• EHDI	Early hearing detection and intervention
• HL	Hearing loss
• HIE	Hypoxic ischemic encephalopathy
• MHL	Mixed Hearing loss
• NHL	normal hearing level
NPV	Negative productive value
TOAEs	Transient Oto Acostic Emission
• TSB	Total serum billirubin
• PPV	Positive predictive value
• SNHL	Sensory neural hearing loss

Introduction

INTRODUCTION

Although most babies can hear normally, 1 to 3 of every 1,000 babies are born with some degree of hearing loss. Without newborn hearing screening it is difficult to detect hearing loss in the first months and years of baby's life (American Academy of Pediatrics, 2012).

It has long been recognized that unidentified hearing loss at birth can adversely affect speech and language development as well as academic achievement and social-emotional development. Historically, moderate-to-severe hearing loss in young children was not detected until well beyond the newborn period, and it was not unusual for diagnosis of milder hearing loss and unilateral hearing loss to be delayed until children reached school age (JIH, 2007).

The age of detection of hearing loss without newborn screening averages between 14-30 months. Undetected, hearing loss hampers speech, language, and cognitive development (Yoshinaga –Itano , 2008).

The goal of early hearing detection and intervention (EHDI) is to maximize linguistic competence and literacy development for children who are deaf or hard of hearing. Without appropriate opportunities to learn language, these children will fall behind their hearing peers in communication, cognition, reading, and social-emotional development(**JIH**, **2007**).

Such delays may result in lower educational and employment levels in adulthood. To maximize the outcome for infants who are deaf or hard of hearing, the hearing of all infants should be screened at no later than 1 month of age (JIH, 2007).

The frequency of the various causes of hearing loss in children has changed over the past thirty years and will probably continue to change as newborn hearing screening becomes available and as more ways develop to prevent hearing loss. Hereditary causes and neonatal intensive care unit (NICU) graduates are contributing now to a major part of the causes of hearing loss in children. The category of NICU graduates easily identifies a group of children who are at risk for hearing loss since they are exposed to unique health experiences, the medical conditions, the potentially ototoxic interventions and complications (**Roizen**, **2009**).

Newborn hearing screening focuses on identifying hearing loss early. Catching problems sooner rather than later can make a big difference in a child's development (AAP, 2012).

Neonatal hearing screening procedures may be divided into two categories: behavioral techniques which are subjective and electro-physiologic procedures which have greater sensitivity and specificity (Suzuki, 2004).

There are 2 screening tests that may be used Otoacoustic Emissions (OAE)—This test measures sound waves produced in the inner ear. A tiny probe is placed just inside the baby's ear canal. It measures the response (echo) when clicks or tones are played into the baby's ears.

Automated Auditory Brainstem Response (AABR)—This test measures how the hearing nerve responds to sound. Clicks or tones are played through soft earphones into the baby's ears. Three electrodes placed on the baby's head measure the hearing nerve's response. Both tests are quick (about 5 to 10 minutes), painless, and may be done while the baby is sleeping or lying still. One or both tests may be used (AAP, 2012).

Regardless of previous hearing-screening outcomes, all infants with or without risk factors should receive ongoing surveillance of communicative development beginning at 2 months of age during well-child visits (AAP, 2002).

In addition, the JCIH (2007) recommended that all infants with risk indicators should be evaluated by an audiologist every 6 months for the first 3 years of life. This helps to quickly identify hearing status changes so that intervention can occur, limiting any impact the hearing loss has on speech and language development (**Nelson, 2008**).

When identification and intervention occur at no later than 6 months of age for newborn infants who are deaf or hard of hearing, the infants perform as much as 20 to 40 percentile points higher on school-related measures (vocabulary, articulation, intelligibility, social adjustment, and behavior) (Yoshinaga-Itano, 2004).

Aim of the work

